MASTER OF SCIENCE

IN

MATHEMATICS

CURRICULUM AND SYLLABUS

(For students admitted from the academic year 2023-2024 onwards)

UNDER CHOICE BASED CREDIT SYSTEM

Department of Mathematics, School of Physical Sciences DIT University, Dehradun Uttarakahnd, India-248009

Programme Name: M. Sc. Mathematics

Objectives

The M.Sc. Mathematics programme provides students with rigorous and thorough knowledge of a broad range of pure and applied areas of mathematics. It is designed to train students with different professional goals, ranging from employment in academics or industry to basic training in foundations needed to pursue a Ph. D. in mathematics or mathematics-related fields.

Eligibility

- Minimum 50% aggregates marks in B.Sc.(H) Mathematics OR
- Minimum 50% aggregates marks in B.Sc.(PCM) Mathematics with at least 55% marks in Mathematics

Duration 2 Years (4 semesters)

Programme Educational Objectives (PEOs)

The Graduates will be able to:

PEO_01. choose a successful career in diversified sectors such as teaching, research, banking, planning, and higher education.

PEO_02. obtain and apply the practical and technical skills to identify, analyze and solve the problems related to the industries.

PEO_03. develop and possess a professional attitude and skills to be socially responsible individuals and work as a team in the workplace and in society considering the professional's ethics, environmental factors, and contribute to the economic growth of the country.

PEO_04. utilize their expertise gained to pursue higher studies and outshine in careers like teaching, research, or technologists.

PEO_05. exhibit their acquired multidisciplinary skills for lifelong learning in their professional and personal upliftment.

Programme Outcomes (POs)

On successful completion, graduates will be able to:

PO1: inculcate critical thinking to carry out scientific investigation objectively without being biased by preconceived notions.

PO2: equip the student with skills to analyze problems, formulate a hypothesis, evaluate and validate results, and draw reasonable conclusions thereof.

PO3: prepare students for pursuing research or careers in industry in mathematical sciences and allied fields **PO4**: imbibe effective scientific and/or technical communication in both oral and writing.

PO5: continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate the highest standards of ethical issues in mathematical sciences.

PO6: create awareness to become an enlightened citizen with a commitment to deliver one's responsibilities within the scope of bestowed rights and privileges.

PO7: carry out development work as well as take up challenges in the emerging areas of Industry.

PO8: demonstrate competence in using mathematical and computational skills to model, formulate and solve real-life applications.

PO9: acquire deep knowledge of different mathematical and computational disciplines so that they can qualify NET/ GATE examination.

PO10: nurture problem-solving skills, thinking, and creativity through assignments, project work.

PO11: articulating ideas and strategies for addressing a research problem

PO12: demonstrate the ability to conduct research independently and pursue higher studies toward Ph. D. degree in mathematics and computing.

Programme Specific Outcomes (PSEs)

On successful completion, graduates will be able to:

PSO1 communicate concepts of Mathematics and its applications.

PSO2 acquire analytical and logical thinking through various mathematical tools and techniques.

PSO3 investigate real-life problems and learn to solve them through formulating mathematical models.

PSO4 attain in-depth knowledge to pursue higher studies and the ability to conduct research.

Work as a mathematical professional.

PSO5 achieve targets of successfully clearing various examinations/interviews for placements in teaching, banks, industries and various other organizations/services.

CURRICULUM AND SYLLABUS

M. Sc. (Mathematics)

Total credits: 88

Year 1	Year 1			eme	ster	1
Category	Course Code	Course Name	L	Т	Р	Credit
CC	MA606	Real Analysis	3	1	0	4
CC	MA607	Linear Algebra	3	1	0	4
CC	MA608	Ordinary Differential Equations	3	1	<i>•</i> 0	4
CC	MA609	Mathematical Statistics	3	1	0	4
CC	MA616	Complex Analysis	3	1	0	4
SEC	MA617	Scientific Computing with MATLAB	-	-	4	2
		Total	15	5	4	22
Year 1				Sem	este	er 2

Year 1

Semester 2

Category	Course Code	Course Name	L	Т	Р	Credit
CC	MA618	Algebra	3	1	0	4
CC	MA619	Numerical Analysis	3	0	2	4
CC	MA626	Topology	3	1	0	4
CC	MA627	Partial Differential Equations	3	1	0	4
	MA646	Orthogonal Polynomials & Special Functions				
DSE	MA647	Fuzzy Sets and Applications	3	1	0	4
DSE	MA648	Statistical Inference	3	1	0	4
	MA649	Integral Equation and Calculus of Variations				
SEC	MA628	Introduction to Python Programming	-	-	4	2
		Total	15	5	4	22

```
Semester 3
```

Category	Course Code	Course Name	L	Т	Р	Credit
CC	MA706	Fluid Dynamics	3	1	0	4
CC	MA707	Functional Analysis	3	1	0	4
CC	MA708	Operations Research	3	1	0	4
CC	MA709	Differentiable Manifold	3	1	0	4
	MA746	Mathematical Modeling and Simulations	2	1	0	4
DSE	MA747	Introduction to Mathematical Finance	3	1	0	4
	MA769	Statistics through SPSS	3	0	2	4
SEC	MA716	Documentation in Latex	0	0	4	2
		Total	14	4	8	22

Year 2				Semester 4		
Category	Course Code	Course Name	L	Т	Р	Credit
CC	MA717	Measure and Integration Theory	3	1	-	4
CC	MA727	Dynamical Systems	3	1	-	4
CC	MA719	Number Theory & Cryptography	3	1	-	4
	MA759	Classical Mechanics				
DSE	MA756	Stochastic Processes	3	1	0	4
DSE	SWAY757	MOOC/SWAYAM Course				
	MA758	Numerical Solution of PDEs	3	0	2	4
Project	MA726	Project (Research and seminar)	-	-	-	6
		Total	12	4		22

As per UGC (Credit Framework for Online Learning Courses through **SWAYAM**) Regulation 2016, DIT University strongly encourages the use of SWAYAM (Study Web of Active Learning by Young and Aspiring Minds) platform. Based on the availability of relevant courses on SWAYAM, students shall choose an online course on the recommendation of faculty advisor and the credits will be transferred.

Summary of the Credits

Year	Semester	Max Credits
1	1	22
1	2	22
2	3	22
2	4	22
Tota	1	84

Category wise classification of the Credit

	Category	Credits	No. of Subjects
CC	Departmental Core Course	64	16
AEC	Ability Enhancement Course	6	3
DSE	Discipline Specific Elective	11	3
PRJT/THESIS	Project	6	1
	Total	88	23

Course Title	Real Analysis	
Course Code	MA606	
Credits	4	
Course Category	CC	
Year / Semester	I/I	
Prerequisite		
Courses		
L T P	3 1 0	
Course Objectives	To develop the understanding of metric space and its different	t aspects,
	continuity and uniform continuity of a function, compactness, Cauchy	y sequence
	and complete metric space, convergence of sequence and series of	functions,
	and Riemann integral and its properties, continuity and different	
	function of two variables.	5
Course Outcomes	After studying this course the student will be able to	
course outcomes	CO1 : understand the countable and uncountable sets and will learn	Bolzano-
	Weierstrass theorem.	
	CO2: understand the Riemannian integrals and Riemann- Stieltjes in	stagral and
		negrai anu
	its properties.	
	CO3: check whether an infinite series of functions is convergence of	
	CO4: understand inverse and implicit function theorems and its app	
	CO5: apply the basic properties of metric space, compactness, and V	Veierstrass
	approximation theorem.	
	Syllabus	No. of Lectures
Unit 1 Real number		
	nd uncountable sets, real number system as a complete ordered field,	8
	y, supremum, infimum, Bolzano-Weierstrass theorem, Heine Borel	0
theorem.		
Unit 2 Differentiatio	on and integration	
		8
· · ·	form continuity, differentiability, mean value theorems, Riemann	0
sums and Riemann in	tegral, Riemann- Stieltjes integral and its properties.	
Unit 3 Sequences an	d series	0
Sequences and series	of functions, convergence, uniform convergence.	8
Unit 4 Function of s	everal variables	
Functions of several v	variables, partial derivatives, inverse and implicit function theorems,	0
maxima and minima.		8
Unit 5 Metric spaces	s and properties	
Basic concepts, con	tinuous functions, completeness, contraction mapping theorem,	10
	actness, Weierstrass approximation theorem.	
	Total No. of Lectures	42
Text Books	1. Rudin W., Principles of Mathematical Analysis, Mc-Graw Hi	ll, 1976.
	2. E. Kreyszig, Introductory Fnctional Analysis with Application	ns, John
	Wiley and Sons, 2010.	
References Books	1. Royden H. L., Real Analysis, Macmillan Publishing Compan	y, 1998.
	2. Tao T., Analysis II, Hindustan Book Agency, Springer, 2015.	
	3. Apostol T. M., Mathematical Analysis, Addison-Wesley, 197	
	4. Simmons G. F., Topology and Modern Analysis, Kreiger, 200)3.
	4. Simmons G. F., Topology and Modern Analysis, Kreiger, 200)3.

Course Title	Linear Algebra	
Course Code	MA607	
Credits	4	
Course Category	CC	
Year / Semester	I/I	
Prerequisite	Matrix Theory	
Courses		
L T P	3 1 0	
Course Objectives	The aim of this course is to introduce students with the fundamenta	l concept
	of vector spaces, concepts of linear transformations, decomposition	
	canonical forms, and adjoint operators. to develop critical real	
	studying the logical proofs and axiomatic methods as applied to pro	
	theorems. The objective of this course is to develop the skill to s	
	understand how abstract definitions are motivated by concrete exam	
	result follows from the axiomatic definitions and are specialized b	ack to the
<u> </u>	concrete examples, and how applications are woven in throughout.	
Course Outcomes	After studying this course the student will be able to	
	1. apply the concepts and methods described in syllabus, will be a	
	solve problems using methods in Linear algebra, and will know	
	application of Linear Algebra to follow complex logical argum	ents and
	develop modest logical argument.	
	2. understand and compute transition matrices, dual basis, dual ve	ctor
	spaces and dual linear transformations.	
	3. deal with the inner product spaces, orthonormal basis, Bessel's	inequality
	and Riesz Representation theorem with applications.	
	4. understand implications of the existence of various operators of	n inner
	product spaces viz. self-adjoint operator, normal operator and the	
	properties.	
	5. apply diagonalization of matrices in various problems together	with
	canonical and quadratic forms.	
	Syllabus	No. of
	-	Lectures
	Linear Equations and Vector Space	
	ems Using Gaussian Elimination, Gauss-Jordan Row Reduction and	
	on Form, Equivalent Systems, Rank, and Row Space, Introduction to	8
· · · · · · · · · · · · · · · · · · ·	spaces, Span, Linear dependence and independence, basis, dimension	
and related propertie		
UNIT-II: Linear T		
	ar Transformations, Algebra of Linear transformations, Vector space	
	ations $L(U, V)$, Dimension of space of linear transformations, Change	8
	on matrices, Linear functional, Dual basis, Computing of a dual basis,	
Dual vector spaces,	Annihilator, Second dual space, Dual transformations.	
UNIT III: Inner Pr	roduct Spaces	
Inner-product spaces	s, Normed space, Cauchy-Schwartz inequality, Pythagorean Theorem,	

theorems, Adjoint op Matrix of adjoint oper	on Vector Spaces product spaces, Isometry on Inner-product spaces and related erator, Self-adjoint operators, Normal operator and their properties, ator, Algebra of $Hom(V, V)$, Minimal Polynomial, Invertible Linear cteristic Roots, Characteristic Polynomial and related results.	8
Diagonalization of M form, Jordan Form. I	Forms and Quadratic Forms atrices, Invariant Subspaces, Cayley-Hamilton Theorem, Canonical Forms on vector spaces, Bilinear Functionals, Symmetric Bilinear etric Bilinear Forms, Rank of Bilinear Forms, Quadratic Forms, Quadratic forms.	8
	Total No. of Lectures	42
Text Books	 Strang G., Introduction to Linear Algebra, Wellesley-Cambr Press, 1993. 	ridge
	 Hoffman K. and . Kunze R, Linear Algebra, 2nd Ed., Prentice India, 2005. 	e Hall of
	3. Herstein, I. N., Topics in Algebra, John Wiley & Sons, 2 nd e	dition,
References Books	 Kumaresan S., Linear Algebra: A Geometric Approach, Prent of India, 2004. Axler S., Linear Algebra Done Right, 2nd Ed., Springer UTM Long S., Linear Algebra Coninger Ut lange data Tests in 	
	 Lang S., Linear Algebra, Springer Undergraduate Texts in Mathematics, 1989. 	

Course Title	Ordinary Differential Equations	
Course Code	MA608	
Credits	4	
Course	CC	
Category		
Year /	I/I	
Semester		
Prerequisite	Basic concepts of Calculus and geometry.	
Courses		
L T P		1 1 6
Course	The aim of the course is to introduce students with the depth kn	-
Objectives	differential equation with different forms of solution, like eigen valu	
	vector method, method of undetermined coefficients, method of	variation of
	parameters.	
Course	After studying this course the student will be able to	-
Outcomes	CO1: express the existence and uniqueness theorem of differential equa	ations.
	CO2: apply the method of undetermined coefficient to solve non-h	
	differential equation with constant coefficient.	0
	CO3: determine particular solutions to differential equations with give	en boundary
	conditions or initial conditions.	en coundury
	CO4: to apply eigenvalue-eigenvector method to find solutions system of	f differential
		i unicicilitai
	equations.	
	CO5: describe Legendre polynomials and Bessel functions and their pr	-
	Syllabus	No. of
Unit-1:		Lectures
	ential equations, equations with variable separable, exact equations,	
=	ion, non-local existence of solutions, uniqueness of solutions, existence	10
-		10
and uniqueness	theorem for first and higher order equations.	
Unit-2:		
	ial equations with constant coefficients, initial value problems for	
	lifferential equations, existence and uniqueness theorem, linear	8
dependence and	independence of solutions, Wronskian and linear independence.	
Unit-3:		
	ial equations with variable coefficients, methods of solutions, initial	<i>.</i>
-	for the homogeneous equations, existence and uniqueness theorem for	6
solution of home	ogenous differential equations and n linearly independent solutions.	
Unit-4:	rular points now or sories and sories solutions of Dessel and Lease dra	
	gular points, power series and series solutions of Bessel and Legendra	10
differential equa	tions, Frobenius method.	
Unit-5:		
	ndary value problem, self-adjoint problem and properties, Strum-	
-	m, solution by Green functions, eigen functions and expansion formulae,	8
-	separation theorems of BVP.	
1		
	Total No. of Lectures	42

Text Books	 Coddington E. A., An Introduction to Ordinary Differential Equations, PHI Learning 1999. Simmons G. F., Differential Equations with Applications and Historical Notes, 2nd Ed, McGraw- Hill, 1991. Agarwal R. P. and O'Regan D., An Introduction to Ordinary Differential Equations, Springer- Verlag, 2008.
References Books	 Agarwal R. P. and Gupta R. C., <i>Essentials of Ordinary Differential Equations</i>, McGraw-Hill, 1993. Braun M., <i>Differential Equations and Their Applications</i>, 3rd Ed., Springer- Verlag, 1983. Deo S. G., Raghavendra V., Kar R. and Lakshmikantham V., <i>Textbook of</i> <i>Ordinary Differential Equations</i>, McGraw Hill Education, 3rd Ed., 2015.

Course Title	Mathematical Statistics	
Course Code	MA609	
Credits	4	
Course Category	CC	
Year / Semester	I/I	
Prerequisite Courses	Basic concepts of set theory.	
L T P	3 1 0	
Course Objectives	The aim of the course is to introduce the concepts and methods of p	robability
Course Objectives	and distribution theory and the tools which are used to develop the	
	statistical estimation and hypothesis testing.	ulcory of
Course Outcomes	After studying this course the student will be able to	,
Course Outcomes	CO1 : calculate conditional probability, covariance and correl	ation and
	determine independence of random variables.	ation and
	CO2: find the distribution of a function of random variables	using the
	methods of distribution functions, transformations, and moment	
	functions.	Scheraling
	CO3: calculate probabilities and quartiles for sampling distribution	ons related
	to the probability distributions.	Jiis Teluced
	CO4: perform hypothesis tests for the mean; compute p-va	alues, and
	probabilities of Type I and Type II errors.	indes, und
	CO5: construct point and interval estimators; evaluate their good	ness (bias
	variance, mean squared error).	10000 (0140),
	variance, mean separed enory.	No. of
Syllabus		Lectures
Unit-I: Probability		
	approaches of probability, Addition theorem, Boole inequality,	
	y and multiplication theorem, Independent events, Mutual and	8
	of events, Bayes theorem and its applications.	-
r ···· ··· ··· ··· ··· ··· ··· ···		
Unit-II: Random vari	able and probability functions	
	es of random variables, Discrete and continuous random variables,	
Probability mass and	density functions, Distribution function. Concepts of bivariate	
	marginal and conditional distributions.	12
	ion: Definition and its properties. Variance, Covariance, Moment	
-	efinitions and their properties.	
Unit-III: Distribution		0
	nomial, Poisson and Geometric distributions with their properties.	8
	and Normal distributions with their properties.	
Unit-IV: Testing of hy	-	
	, Sampling distribution and standard error of estimate, Null and	8
	, Simple and composite hypotheses, Critical region, Level of	0
	and two tailed tests, Two types of errors.	
Unit V: Tests of signif		
Large sample tests for single mean, Single proportion, Difference between two means and		
two proportions.		
	Total No. of Lectures	42

Text Books	 Hogg V. and Craig T., Introduction to Mathematical Statistics, 7th addition, Pearson Education Limited-2014. Mood A.M., Graybill F.A., and D.C. Boes, Introduction to the Theory of Statistics, Mc Graw Hill Book Company.
References Books	 Speigel M., Probability and Statistics, Schaum Outline Series. Gupta S.C. and Kapoor V.K., Fundamentals of Mathematical Statistics, S. Chand Pub., New Delhi.

Course Title	Complex Analysis	
Course Code	MA616	
Credits	4	
Course	CC	
Category		
Year / Semester	I/I	
Prerequisite	Basic concepts of Calculus.	
Courses		
L T P	3 1 0	
Course Objectives	The aim of the course is to introduce the students with complex function integral theorem and formula, conformal mapping, and convex function properties.	· · · · ·
Course	After studying this course the student will be able to	
Outcomes	CO1: To describe and apply the complex integration and its theorems.	
	CO2: find series expansion about isolated singularities and determine re-	esidues.
	CO3: use conformal mapping between many kinds of domain.	
	CO4: . Understand Analytic Continuations and Meromorphic Functions	
	Syllabus	No. of Lectures
		Lectures
of line integrals (o Goursat theorem, theorem for a disk, of Cauchy integra	plex plane, Properties of complex line integrals, Fundamental theorem r contour integration), Simplest version of Cauchy's theorem, Cauchy- Symmetric, starlike, convex and simply connected domains, Cauchy's Cauchy's integral theorem, Index of a closed curve, Advanced versions al formula and applications, Cauchy's estimate, Morera's theorem, imum modulus principles. Riemann's removability theorem	10
of removable sing sequences and ser evaluation of defi	ties and Residues I functions, singularities, classification of singularities, characterization gularities and poles, Taylor's series, Laurent's series, Convergence of ries of functions, Weierstrass' M-test, residues, calculus of residues, inite integral, calculus of residues; evaluation of definite integrals; e; Rouche's Theorem.	10
Rational functions, contour integration mappings. Fixed p Triples to triples u	nal Mappings and Transformations , behaviour of functions in the neighbourhood of an essential singularity, on problems, Mobius transformation, cross-ratio, and conformal points, Characterizations of Möbius maps in terms of their fixed points, under Möbius maps, Complex form of equations of straight lines, half ., analytic (holomorphic) function as mappings.	12
Direct analytic c Monodromy theo Meromorphic fund	Continuations and Meromorphic Functions ontinuations, uniqueness of analytic continuation along a curve, rem and its consequence, analytic continuation via Reflection, ctions and argument principle, Schwarz lemma, convex functions and adamard 3-circles theorem.	10
	Total No. of Lectures	42

Text Books	1. Ablowitz M.J. and Fokas A.S., Complex Variables: Introduction and
	Applications, Cambridge University Press, 2003.
	2. Zill D.G. and Shanahan P.D., A First Course in Complex Analysis with
	Applications, 2nd ed., Boston: Jones and Bartlett Learning, 2010.
Defenences	1 Mathews III and Howell D.W. Complex Analysis for Mathematics and
References	1. Mathews J.H. and Howell R.W., Complex Analysis for Mathematics and
Books	Engineering, 6th ed., London: Jones and Bartlett Learning, 2011.
	2. Brown J.W. and Churchill R.V., Complex Variables and Applications, 7th ed.,
	New York: McGraw-Hill, 2003.
	3. S. Ponnusamy: Foundations of Complex Analysis, 2nd Ed, Narosa Publishing
	House, 2005

Course Title	Scientific Computing with Matlab	
Course Code	MA617	
Credits	2	
Course Category	SEC	
Year / Semester	I/I	
Prerequisite Courses	No specific prerequisites are needed.	
L T P	0 0 4	
Course Objectives	The main objective of the course is to provide a basic underst MATLAB, including popular toolboxes. The course consists of lectures and sample MATLAB problems given as assignments and in class. Concepts covered include basic use, graphical represent tips for designing and implementing MATLAB code.	interactive discussed
Course Outcomes	After studying this course the student will be able to	
	CO1 : use the MATLAB GUI effectively.	
	 CO2: write simple programs in MATLAB to solve scien mathematical problems. CO3: create and control simple plot and user-interface graphics MATLAB. CO4: use MATLAB effectively to analyze and visualize data. 	
	CO5: use in-built functions to complete the different types of task.	
	Syllabus	No. of
	Synabus	Lectures
Unit-I: Introduction to	o MATLAR	Lettures
Vector and matrix ger operations and their ma	neration, subscripting and the colon notation, matrix and array inipulations, introduction to some inbuilt functions related to array ipts and functions, editing, saving m-files, and interaction between	4
Unit-II: Two & Three	-dimensional Graphics	
Basic plots, change in a	xes and annotation in a figure, multiple plots in a figure, saving and plots, surface plots and their variants.	6
Unit-III: Relational an	nd Logical Operators	
_	ious statements and loops including If-End statement, If-Else-End lse-End statement, For-End and While-End loops with Break	4
Unit-IV: Introduction	to Built-in Functions	
representation: bar char	version, eigenvalues, eigenvectors, condition number; for data ts, histograms, pie chart, stem plots etc; for solving various type of for specialized plotting e.g., contour plots, sphere, and animations.	6
	Total No. of Lectures	20
Text Books		
	 Gilat Amos, MATLAB: An introduction with applications, Edition, Wiley India, 2014. Chadha Naresh Mohan, Programming in Matlab: With App Numerical Methods for Engineers and Scientists, ASIN: B08RH5N113, 2020. 	
References Books	 Chapra Steven, Applied Numerical Methods with Matlab for Engineers and Scientists, 4th Ed., McGraw Hill, 2017. Pratap Rudra, Getting Started with MATLAB: A Quick Int for Scientists and Engineers, Oxford University Press, 2010 	roduction

Course Title	Algebra				
Course Code	MA618				
Credits	4				
Course Category	CC				
Year / Semester	I/II				
Prerequisite Courses					
LTP	3 1 0				
Course Objectives	To develop the understanding of basic structures of algebra like gro	ups, rings,			
	fields and vector spaces, Sylow's theorems, Galois theorem and fields	eld theory.			
Course Outcomes	After studying this course the student will be able to				
	CO1: assess properties implied by the definitions of groups and rin	ngs.			
	CO2: analyze and demonstrate examples of subgroups, normal	subgroups			
	and quotient groups.				
	CO3: use the concepts of isomorphism and homomorphism for g	roups and			
	rings.	· 1			
	CO4: describe Sylow's theorems and their applications.				
	CO5: understand properties of finite fields and Galois theory.				
		No. of			
	Syllabus	Lectures			
Unit-I: Group theory					
	normal subgroups, Euler's Ø- function, quotient groups and				
	ems, automorphisms, cyclic groups and permutation groups,	8			
Cayley's theorem.					
Unit-II: Sylow's theor	'ems				
=	's theorems and their applications.	8			
Unit-III: Ring theory	s theorems and their appreadons.				
.	d maximal ideals quatient rings fundamental theorem of				
	d maximal ideals, quotient rings, fundamental theorem of	10			
arithmetic, unique factorization domain, principal ideal domain, Euclidean domain,					
polynomial rings and ir	reducibility criteria.				
Unit-IV: Field theory					
-	tensions, existence and cardinality of algebraic closure, finite	8			
fields.					
Unit-V: Galois theory	Unit-V: Galois theory				
Chinese remainder theorem, Galois theory of polynomial in characteristic zero and					
simple examples.					
	Total No. of Lectures	42			
Text Books	1. Gallian J. A., Contemporary Abstract Algebra, Narosa, 4 th Ed				
	2. Herstein, I. N. Topics in Algebra, John-Wiley, 1995.	,			
References Books	1. Artin M., Algebra, Prentice Hall Inc., 1994.				
NCICI CIICES DUURS	_	Doorson			
2. Sharma R. K., Algebra-I: A Basic Course in Abstract Algebra, Pearson					
Education India, 2011.					
3. Fraleigh J. B., A First Course in Abstract Algebra, Pearson, 7 th Ed.,					
	2003.				

Course Title	Numerical Analysis		
Course Code	MA619		
Credits	4		
Course Category	CC		
Year / Semester	I/II		
Prerequisite Courses	Some exposure to linear algebra and calculus.		
LTP	3 0 2		
Course Objectives	To develop the understanding of errors in computations, several methods for interpolation, methods to solve an algebraic and transcendental equations, direct and iterative methods to solve a system of linear equations, different methods to solve ODE and methods to find numerical derivative and integration of a function.		
Course Outcomes	After studying this course the student will be able to CO1: analyze the error incumbent in any such numerical approximation. CO2: compare the viability of different approaches to the numerical solution of problems arising in roots of solution of non-linear equations. CO3: describe the interpolation and approximation, numerical differentiation and integration, solution of linear systems. CO4: solve linear and nonlinear systems of equations numerically. CO5: solve initial and boundary value problems numerically.		
	Syllabus	No. of Lectures	
Unit-I: Solution of equations Computer arithmetic, errors, numerical solution of algebraic and transcendental equations, bisection, secant method, Newton- Raphson method, rate of convergence.			
Unit-II: Direct methods for solving linear system of equation Norms of vectors and matrices, solution of systems of linear equations: direct methods (Gauss elimination, LU decomposition), iterative methods (Jacobi and Gauss-Seidel), ill conditioning and convergence analysis.		8	
Unit-III: Interpolation Error of polynomial interpolation, Lagrange, Hermite and spline interpolations, Newton interpolations, Chebyshev approximation, power method to find the eigenvalues.		8	
Unit-IV: Numerical differentiation and numerical integration Numerical differentiation based on interpolation, Trapezoidal and Simpson rules.			
Numerical solutions of methods, single step	lution of differential equations f ODE's using Picard, Euler, modified Euler and Runge-Kutta and multi-step methods, order, consistency, stability and stiff equations, two point boundary value problems: shooting and ds.	10	
	Total No. of Lectures	42	

Text Books	 Kincaid D. and Cheney W., Numerical Analysis and Mathematics of Scientific Computing, Brooks/Cole, 1999. Jain M. K., Iyengar S. R. K. and Jain R. K., Numerical Methods for Scientific and Engineering Computation, New age International Publishers, 2012.
References Books	 Butcher J. C., The Numerical Analysis of Ordinary Differential Equations, John Wiley, 1987. Schwarz H. R., Numerical Analysis: A Comprehensive Introduction, Wiley, 1st Ed., 1989. Sharma R. K., Complex Numbers and the Theory of Equations, Anthem Press India, 2012.
** I abaratary Wark.	

** Laboratory Work: Laboratory experiments will be set in consonance with the materials covered in theory.

Course Title	Topology				
Course Code	MA626				
Credits	4				
Course Category	CC				
Year / Semester	I / II				
Prerequisite	Exposure to set theory and metric spaces.				
Courses					
L T P	3 1 0				
Course Objectives	To introduce the basic definitions and standard examples of the	1 0			
	spaces, define and illustrate a variety of topological properties su	ich as like			
	compactness, connectedness and separation axioms.				
Course Outcomes	After studying this course the student will be able to				
	CO1 : define and illustrate the concept of topological spaces and c	continuous			
	functions.				
	CO2: define and illustrate the concept of product topology and	d quotient			
	topology.				
	CO3: prove a selection of theorems concerning topological	al spaces.			
	continuous functions, product topologies, and quotient topologies	1			
	CO4: define connectedness and compactness, and prove a se				
	related theorems.				
	CO5: describe different examples distinguishing general, geom	etric, and			
	algebraic topology.				
	Syllabus	No. of Lectures			
Unit-I: Basic concept	s of topology	Lectures			
-	sis for a topology, order topology, subspace topology.	8			
Unit-II: Topological s	spaces and continuous functions				
Closed sets, countability	ity axioms, limit points, continuous functions, product topology,	8			
metric topology, quotie		Ũ			
Unit-III: Connectedn					
		8			
	nected sets in R, components and path components.				
Unit-IV: Compactnes					
Compact spaces, comp	pactness in metric spaces, local compactness, convergence of nets	8			
in topological spaces.					
Unit-V: Countability	and separation axioms				
	paration axioms, normal spaces, Urysohn'slemma, Urysohn	10			
metrization theorem.	, , , , , , , , , , , , , , , , , , , ,	••			
	Total No. of Lectures	42			
Text Books	1. Munkres J. R., <i>Topology</i> , Prentice Hall, NJ, 2000.	74			
I CAL DUURS		Anabaia			
	2. Simmons G. F., Introduction to Topology and Modern Intermetional Student Edition 1062	Analysis,			
	International Student Edition, 1963.				
References Books	1 Joshi K. D. Introduction to General Topology New Age Inte	ernational			
	New Delhi, 2000.	11 1000			
	2. Deshpande J. V., <i>Introduction to Topology</i> , Tata McGraw-H	111, 1988.			
	3. Dugundji J., <i>Topology</i> , Allyn and Bacon Inc., 1966.				

Course Title	Partial Differentials Equations		
Course Code	MA627		
Credits	4		
Course Category	CC		
Year / Semester	I/II		
Prerequisite Courses	Exposure to multivariable calculus and ordinary differential equation	ons.	
L T P	3 1 0		
Course Objectives	The main aim of this course is to understand various analytical methods to find exact solution partial differential equations and their implementation to solve real life problems.		
Course Outcomes	After studying this course the student will be able to CO1: solve the first-order linear and non-linear PDE's by using I and Charpit's methods respectively. CO2: determine the solutions of linear PDE's of second and higher constant coefficients. CO3: classify second order PDE and solve standard PDE using sep variable method. CO4: competent in solving linear PDEs using classical solution me	order with	
	CO5: solve PDEs in cylindrical and spherical coordinates.		
	Syllabus	No. of Lectures	
-	n of PDEs, Classification, Geometrical interpretation. The Cauchy of characteristics for Semi linear, quasi linear and Non-linear	8	
Classification of seco parabolic and elliptic PI	PDE and Non-Linear equations, Linear Superposition principle, ond-order linear partial differential equations into hyperbolic, DEs, Reduction to canonical forms, solution of linear Homogeneous with constant coefficients, Variable coefficients, Monge's method.	10	
	on of separation of variables and integral transforms, Cauchy problem, drical and spherical polar co-ordinates.	8	
and Churchills problem	Diffusion Equations of separation of variables and transforms. Dirichlet's, Neumann's s, Dirichlet's problem for a rectangle, half plane and circle, Solution cylindrical and spherical polar coordinates.	8	

 Unit-V: Transform Method
 8

 Fundamental solution by the method of variables and integral transforms, Duhamel's
 8

 principle, Solution of the equation in cylindrical and spherical polar coordinates.
 8

 Total No. of Lectures
 42

Text Books	. SNEDDON N., Elements of PDE's, McGraw Hill Book company Inc., 2006.	
	2. DEBNATH L, Nonlinear PDE's for Scientists and Engineers, Birkhauser, Boston, 2007.	
References Books	1. Treves F., Basic linear partial differential equations, Academic Press, 1975.	
	2. Smith M.G., Introduction to the theory of partial differential equations, Van Nostrand, 1967.	
	3. Rao Shankar, Partial Differential Equations, PHI, 2006.	

Course Title	Orthogonal Polynomials & Special Functions				
Course Code	MA646				
Credits	4				
Course Category	DSE				
Year / Semester	I/II				
Prerequisite Courses					
L T P	3 1 0				
Course Objectives	The aim of the course is to (i) investigate and derive the properties functions, (ii) know the inter-relations between such functions representations in various forms, (iii) learn certain specific s orthogonal polynomials and their properties, and (iv) to obtain the functions of the polynomials.	and their ystems of			
Course Outcomes	After studying this course the student will be able to CO1 : solve, expand and interpret solutions of many types of differential equations by making use of special functions and of polynomials. CO2 : derive the formulas and results of certain classical special fun- orthogonal polynomials by different methods. CO3 : derive the generating relations involving special functions. CO4 : achieve the knowledge to analyses the problems using the n- special functions and orthogonal polynomials. CO5 : describe the role of special functions and orthogonal polynomials.	orthogonal actions and nethods of			
	other areas of mathematics.	No of			
		No. of Lectures			
Introduction; Gamma F	other areas of mathematics. Syllabus ergeometric, and Bessel Functions function; Hypergeometric Functions: Definition and special cases,				
Introduction; Gamma F convergence, analyticit	other areas of mathematics. Syllabus ergeometric, and Bessel Functions function; Hypergeometric Functions: Definition and special cases, ty, integral representation, differentiation, transformations and				
Introduction; Gamma F convergence, analyticit	other areas of mathematics. Syllabus ergeometric, and Bessel Functions function; Hypergeometric Functions: Definition and special cases,				
Introduction; Gamma F convergence, analyticit summation theorems; function, differential	other areas of mathematics. Syllabus ergeometric, and Bessel Functions function; Hypergeometric Functions: Definition and special cases, ty, integral representation, differentiation, transformations and	Lectures			
Introduction; Gamma F convergence, analyticit summation theorems; function, differential representation; Neuman above topics.	other areas of mathematics. Syllabus ergeometric, and Bessel Functions bunction; Hypergeometric Functions: Definition and special cases, ty, integral representation, differentiation, transformations and Bessel Functions: Definition, connection with hypergeometric and pure recurrence relations, generating function, integral an polynomials, Neumann series and related results; Examples on	Lectures			
Introduction; Gamma F convergence, analyticit summation theorems; function, differential representation; Neuman above topics. UNIT II: Legendre an Legendre polynomials: recurrence relations (iv)	other areas of mathematics. Syllabus ergeometric, and Bessel Functions bunction; Hypergeometric Functions: Definition and special cases, ty, integral representation, differentiation, transformations and Bessel Functions: Definition, connection with hypergeometric and pure recurrence relations, generating function, integral an polynomials, Neumann series and related results; Examples on d Neumann Polynomials (i) Generating function (ii) Special values (iii) Pure and differential Differential equation (v) Series definition (vi) Rodrigues' formula tion; Neumann polynomials, Neumann series and related results;	Lectures			
Introduction; Gamma F convergence, analyticit summation theorems; function, differential representation; Neuman above topics. UNIT II: Legendre an Legendre polynomials: recurrence relations (iv) (vii) Integral representa Examples on above topic	other areas of mathematics. Syllabus ergeometric, and Bessel Functions unction; Hypergeometric Functions: Definition and special cases, ty, integral representation, differentiation, transformations and Bessel Functions: Definition, connection with hypergeometric and pure recurrence relations, generating function, integral in polynomials, Neumann series and related results; Examples on d Neumann Polynomials (i) Generating function (ii) Special values (iii) Pure and differential Differential equation (v) Series definition (vi) Rodrigues' formula tion; Neumann polynomials, Neumann series and related results; ics. Laguerre Polynomials	Lectures 10 8			
Introduction; Gamma F convergence, analyticit summation theorems; function, differential representation; Neuman above topics. UNIT II: Legendre an Legendre polynomials: recurrence relations (iv) (vii) Integral representa Examples on above topi Unit-III Hermite and Hermite polynomials:	other areas of mathematics. Syllabus ergeometric, and Bessel Functions unction; Hypergeometric Functions: Definition and special cases, ty, integral representation, differentiation, transformations and Bessel Functions: Definition, connection with hypergeometric and pure recurrence relations, generating function, integral un polynomials, Neumann series and related results; Examples on d Neumann Polynomials (i) Generating function (ii) Special values (iii) Pure and differential Differential equation (v) Series definition (vi) Rodrigues' formula tion; Neumann polynomials, Neumann series and related results; ics.	Lectures 10			

Bessel, Legendre, Hermite and Laguerre differential equations; Examples on above topics.

Unit-V: Generating Fu	unction	S	
Generating functions	of some	e standard forms including Boas and Buck type. Sister	0
Celine's techniques for	finding	pure recurrence relation. Characterization: Appell, Sheffes	8
and s-type characterization	tion of p	olynomial sets.	
V 1	1	Total No. of Lectures	42
Text Books	1.	Rainville E. D., Special Functions, Chelsea Publishing Co.,	Bronx,
		New York, Reprint, 1971.	
	2.	Marcellan F. and Assche W. Van, Orthogonal Polyno	mials and
		Special Functions: Computation and Applications, Lecture	e Notes in
		Mathematics, Springer, 2006.	
References Books	1.	Szego G., Orthogonal Polynomials, Memoirs of AMS, 193	9.
	2.	Ismail M.E.H., Classical and Quantum Orthogonal Polyr	nomials in
		One Variable, Cambridge University Press, 2005.	
	3.	Chihara T.S., An Introduction to Orthogonal Polynomia	als, Dover
		Publications, 2011.	Ψ.
	4.	McBride E. B., Obtaining Generating Functions, Springe	er Verlag,
		Berlin Heidelberg, 1971.	

Course Title	Fuzzy Sets and Applications	
Course Code	MA647	
Credits	4	
Course Category	DSE	
Year / Semester		
Prerequisite Courses	Preliminary knowledge of Set Theory	
LTP	3 1 0	
Course Objectives	The objective of this course is to teach the students the need of f arithmetic operations on fuzzy sets, fuzzy relations, possibility the logic, and its applications.	•
Course Outcomes	After studying this course the student will be able to	
	 CO1: construct the appropriate fuzzy numbers corresponding to uncertain and imprecise collected data. CO2: handle the problems having uncertain and imprecise data. CO3: find the optimal solution of mathematical programming problems having uncertain and imprecise data. CO4: know the concepts of fuzzy graph, fuzzy relation, fuzzy morphism and fuzzy numbers. CO5: deal with the fuzzy logic problems in real world problems. 	
	Syllabus	
Unit-I: Fuzzy Sets		Lectures
Overview of classical s	sets, Membership function, A-cuts, Properties of a-cuts, Extension	0
principle. Compliment	, Intersections, Unions, Combinations of operations, Aggregation	8
operations.		
Unit-II: Fuzzy Arithm	netic	
•	istic variables, Arithmetic operations on intervals and numbers,	8
Unit-III: Fuzzy Relati	ons	
Crisp and fuzzy relatio	ns, Projections and cylindrical extensions, Binary fuzzy relations, single set, Equivalence, Compatibility and ordering Relations,	10
Unit IV: Possibility T	heory & Fuzzy Logic	
	nce and possibility theory, Possibility versus probability theory. valued logics, Fuzzy propositions, Fuzzy qualifiers, Linguistic	8
Unit-V: Applications of	of Fuzzy Logic	_
	ntrol systems engineering, Power engineering and Optimization.	8
Toyt Rooks	Total No. of Lectures	42
Text Books	 Klir G. J. and Folger T.A., Fuzzy Sets, Uncertainty and Information, 1st Edition edition, Prentice Hall Inc., 1988. Klir G.J. and Yuan B., Fuzzy Sets and Fuzzy logic: Theory and Applications, PHI, 1997. 	
References Books	 Zimmermann H.J., Fuzzy Set Theory and its Applications, Edition, Allied Publishers, 2001. J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control, 4 	
	Information, Pearson Education, 2003.	

Course Title	Statistical Inference	
Course Code	MA648	
Credits	4	
Course Category	DSE	
Year / Semester	I/II	
Prerequisite Courses	Exposure to basic concepts of statistics and probability.	
LTP	3 1 0	
Course Objectives	The course aims to shape the attitudes of learners regarding the field of statistics. Specifically, the course aim to motivate students in an intrinsic interest in statistical thinking and instill the belief that statistics is important for scientific research.	
Course Outcomes	After studying this course the student will be able to	
	CO1 : describe the error and its significance in different types of sa	mpling.
	CO2: construct point and interval estimators; evaluate their good	ness (bias,
	variance, mean squared error).	
	CO3: understand the concept of the sampling distribution of a sta	atistic and
	in particular describe the behavior of the sampling distribution of a sample in particular describe the behavior of the sample mean. CO4: demonstrate understanding the estimation of mean and variable respective one-sample and two-sample hypothesis tests. CO5: explain the large sample properties of sample mean.	ŗ
	Syllabus	No. of Lectures
Unit-I: Distributions		
The concept of sampling distribution, standard error and its significance, sampling distribution of Chi Square, t and F with derivations, properties of these distributions and their inter relations.		8
Unit-II: Estimation Problem of estimation; point estimation, interval estimation, criteria for a good estimator, unbiasedness, consistency, efficiency and sufficiency with examples.		8
Unit-III: Moments Method of moments and maximum likelihood and application of these method for obtaining estimates of parameters of binomial, Poisson and normal distributions, properties of M.L. E's (without proof), merits and demerits of these methods.		8
Unit-III: Testing of HypothesisStatistical hypothesis, Null and alternative hypothesis, simple and composite hypothesis, two types of error, critical region, power of test, level of significance. Best Critical Region, NP Lemma, its applications to find most powerful in case of binomial. Poisson and normal distributions.		8
distribution, confidence for normal case) confid (only for normal case).	Ficance sed on t, F and Chi-square distribution and test based on normal e interval for single mean, difference of means and variance (only dence interval for single mean, difference of means and variance . Test of significance for large samples for attributes and variable, , single sample, two samples (both paired and independent). Total No. of Lectures	10 42
	1 otal No. of Lectures	42

Text Books	1. Kale, B.K.: A First Course on Parametric Inference, Narosa
	Publishing House, 1999.
	2. Rohatgi, V.K.: An Introduction to Probability and Mathematical
	Statistics, Wiley Eastern, New Delhi, 1988.
	3. Lehmann, E.L.: Theory of Point Estimation, Student Edition, 1986.
References Books	1. Lehmann, E.L.: Testing Statistical Hypotheses, Student Editions,
	1986.
	2. Rao, C.R.: Linear Statistical Inference and its Applications, Wiley
	Eastern, 1973.
	3. Zacks, S.: Theory of Statistical Inference, Wiley, New York, 1971.

Course Title	Integral Equation and Calculus of Variations		
Course Code	MA649		
Credits	4		
Course Category	DSE		
Year / Semester	I/II		
Prerequisite Courses			
LTP	3 1 0		
Course Objectives	The main goal of this course is to introduce to students the fundamental concepts and some standard results of the integral equations, the methods of solving Integral Equations, the problems of the calculus of variations and its many methods and techniques without using deep knowledge of functional analysis.		
Course Outcomes	After studying this course the student will be able to	×	
	CO1. to recognize difference between Volterra and Fredholm	n Integral	
	Equations, First kind and Second kind, homogeneous and inhomoge	eneous etc.	
	CO2. to apply different methods to solve Integral Equations		
	understand the properties of geometrical problems.	·	
	CO3 . to understand the fundamental concepts of the space of a	admissible	
	variations.		
	CO4 . to understand weak and a strong relative minimum of an inte	oral	
	CO5 . to exposed to the variational problems with moving boundar		
	cos. to exposed to the variational problems with moving boundar	No. of	
	Syllabus	Lectures	
Unit-I: Preliminary C	oncepts		
Definition and classification of linear integral equations. Conversion of initial and		0	
boundary value problem	ms into integral equations. Conversion of integral equations into	8	
differential equations. Integro-differential equations.			
-	Unit-II: Fredholm Integral Equations		
Solution of integral equations with separable kernels, Eigenvalues and Eigen functions.			
Solution by the successive approximations, and resolvent kernel. Solution of integral		8	
•	ric kernels, Hilbert-Schmidt theorem, Green's function approach.		
Unit-III: Fredholm Cl			
	·	8	
Fredholm method of solution and Fredholm theorems. Unit-IV: Volterra Integral Equations			
Successive approximations, Neumann series and resolvent kernel. Equations with			
convolution type kernels. Singular integral equations, Hilbert-transform, Cauchy type			
integral equations.			
Unit-V: Calculus of Variations			
Basic concepts of the calculus of variations such as functionals, extremum, variations,			
function spaces, the b	rachistochrone problem. Necessary condition for an extremum,		
Euler's equation with the cases of one variable and several variables, Variational		10	
derivative. Invariance of Euler's equations. Variational problem in parametric form.			
Functionals dependent on one or two functions, Derivation of basic formula, Variational			
-	boundaries, Broken extremals: Weierstrass – Erdmann conditions.		
. 0		10	
	Total No. of Lectures	42	

Text Books	1. Jerry, A. J., Introduction to Integral Equations with Applications,
	Wiley Publishers (2nd Edition), 1999.
	2. Kanwal R. P., Linear Integral Equations, Birkhäuser Bosten, (2nd
	Edition), 1997.
	3. Weinstock R., Calculus of Variations with Applications to Physics
	and Engineering, Dover Publications, 1974.
References Books	1. Chambers, L. G., Integral Equations: A Short Course, International
	Text Book Company Ltd., 1976.
	2. Gelfand, I. M., Fomin, S. V., Calculus of Variations, Dover Books,
	2000.

Course Title	Introduction to Python Programming	
Course Code	MA628	
Credits	2	
Course Category	SEC	
Year / Semester	I/II	
Prerequisite Courses		
L T P	0 0 4	
Course Objectives	The objective of the course is to provide skills for writing PYTHON programs, to create simple programming scripts and functions, and to solve basic and advanced numerical and symbolic mathematics problems, and to visualize and present data.	
Course Outcomes	After studying this course the student will be able to CO1: translate mathematical methods to PYTHON code. CO2: use in-built functions to complete the different types of task CO3: use python software to solve mathematical problems. CO4: create and control simple plot and user-interface graphics objects in Python.	
	CO5: use Python effectively to analyze and visualize data.	N f
	Syllabus	No. of Lectures
Unit-I: Basics of Python Programming Brief Introduction, Installation of PYTHON, Use of PYTHON, Key features, Introduction to PYTHON Software and different editors, Data files and Data types: Character and string, Arrays and vectors, Column vectors, Row vectors.		4
Unit-II: Functions Assigning value to va strings, python inbuilt f	riables, input functions, Eval functions, formatting number and functions.	4
Arithmetic operators; assignment operator.	Expressions & Control Flow unary operators, binary operators, Bitwise operator, Compound poop control, Functions, Strings, Lists, List processing: searching &	4
functions and equation Solving Equations, prog to solve mathematical p	ific Python and Numpy, Program for Arithmetic operations on is, Factorizing and Expanding Expressions, Substituting Values, gram for Matrix operations, and Trigonometric functions, programs problems by user defined functions, Programs for Symbolic Math.	6
Unit-V: Plotting with Python		4
Introduction to matplot	lib, Plotting and Graphics.	
Text Books	Total No. of Lectures 1. Saha Amit, Doing Math with Python. William Pollock (201	22 15).
References Books	1. Hall Tim and Stacey J. P. Python 3 for Absolute Beginners	

Course Title	Fluid Dynamics		
Course Code	MA706		
Credits	4		
Course Category	CC		
Year / Semester			
Prerequisite Courses	Nil		
L T P	3 1 0		
Course Objectives	The objective is to provide the student with knowledge of the of fluid dynamics and an appreciation of their application problems.		
Course Outcomes	After studying this course the student will be able to CO1: understand the basic principles of fluid mechanics, such a and Eulerian approach, conservation of mass etc. CO2: use Euler and Bernoulli's equations and the conservation determine velocity and acceleration for incompressible and invi CO3: understand the concept of rotational and irrotational functions, velocity potential, sink, source, vortex etc. CO4: analyze simple fluid flow problems (flow between paralle through pipe etc.) with Navier - Stoke's equation of motion. CO5: understand the phenomenon of flow separation and bo theory.	on of mass to scid fluid. flow, stream el plates, flow	
	Syllabus	No. of Lectures	
Unit-I: Introduction to	o fluid flows		
unsteady flows, velocity	velocity, acceleration, streamlines, pathlines, steady and y potential, vorticity vector, local and particle rates of change, conditions at a rigid boundary.	8	
Unit-II: Conservation	equation of continuity, conditions at a rigid boundary.		
Pressure at a point in a	fluid, boundary conditions of two inviscid immiscible fluids, otion, Bernoulli's equation, some potential theorems, flows	8	
	classification of fluid motion		
Two dimensional flow complex potential for complex potential for systems, Milne-thoms	Two dimensional flows, use of cylindrical polar co-ordinates, stream function, complex potential for two-dimensional flows, irrotational, incompressible flow, complex potential for standard two-dimensional flows, two dimensional image systems, Milne-thomson circle theorem, theorem of Blasius, mathematical formulation and solution procedures.		
Unit-IV: Dynamic sim	ilarity		
Dimensional analysis, Buckingham's pi theorem, dynamic similarity, vorticity diffusion, steady flow between parallel plates, steady flow in a circular pipe, steady flow between two co-axial cylinders.			
Unit-V: Flow instability			
Navier-Stokes equation numbers, boundary lay	s of motion and some exact solutions, Flows at small Reynolds er theory, Method of normal modes, Benard problem, double- Caylor problem, Kelvin-Helmholtz instability, instability of	10	
	Total No. of Lectures	42	

Text Books	 Chorlton F., Textbook of Fluid Dynamics, CBS Publishers, 1998. Kundu P. K. and Cohen I. M., Fluid Mechanics, Academic Press 	
	London, 2002.	
References Books	Batechelor G. K., An Introduction to Fluid Dynamics, Cambridge Press, 2 nd Ed., 2000.	
	2. White F. M., Fluid Mechanics, McGraw Hill, New York, 8 th Ed., 2015.	
	3. Drazin P. G. and Reid W. H., Hydrodynamic Stability, Cambridge Press,	
	2 nd Ed., 2004.	

Course Title	Functional Analysis		
Course Code	MA707		
Credits	4		
Course Category	CC		
Year / Semester			
Prerequisite Courses	Exposure to real analysis, topology and linear algebra.		
L T P	3 1 0		
Course Objectives	To introduce the definitions and illustrations of several normed spaces, linear operators and derive their properties, and elaborate on basic theorems like open and closed mapping theorem, Hahn-Banach theorem and uniform boundedness theorem.		
Course Outcomes	After studying this course the student will be able to		
	 CO1: understand the normed linear spaces, Banach space and Dual spaces. CO2: understand inner product spaces, orthogonality and Hillbert spaces. CO3: distinguish between finite and infinite dimensional spaces. CO4: apply linear operators in the formulation of differential and integral equations 		
	Syllabus	No. of Lectures	
-	ems nension of spaces, linear transformations and linear operators, spaces, definition of Banach spaces with examples.	10	
Continuous linear tran space into its second	Unit-II: Banach spaces Continuous linear transformations, The Hahn-Banach theorem, natural imbedding of a space into its second conjugate space, open mapping theorem, closed graph theorem, conjugate of an operator, Banach Steinhaus's uniform boundedness theorem.		
Inner product spaces, orthogonal complement	Unit-III: Hilbert spaces Inner product spaces, definition and properties, Schwarz inequality and theorems, orthogonal complements, orthonormal sets, Bessel's inequality, complete orthonormal sets, conjugate space H*.		
Unit-IV: Operators on Adjoint of an operator,	h Hilbert spaces self-adjoint operators, normal and unitary operators, projections.	8	
	Total No. of Lectures	42	
 Text Books Simmons G. F., Introduction to Topology and Modern Analysis, Tata McGraw-Hill International Ed.2004, Fourteenth reprint 2010. Nair M. T., Functional Analysis: A First Course, PHI-Learning (Formerly: Prentice-Hall of India), New Delhi, 2002. 			
References Books	 Kreyszig E., Introductory Function Analysis with Applications, John Wiley and Sons, 2010. Rudin W., Functional Analysis, TMH Edition, 2006. Limaye B. V., Functional Analysis, New Age International, 2nd Ed., 1996. 		

Course Title	On sustion Bassanch	
Course Title Course Code	Operation Research MA708	
Course Code		
Course Category	4 CC	
Year / Semester		
Prerequisite	NIL	
Courses		
L T P	3 1 0	
Course Objectives	The course aims to introduce students to the use of quantitat	ive methods and
	techniques for effective decisions-making; model formulation	
	that are used in solving business decision problems.	11
Course Outcomes	After studying this course the student will be able to	
	CO1 : Formulate some real-life problems into Linear program	nming problems
	and use the simplex method to find an optimal vector for the	01
	programming problem.	
	CO2 : Concept of duality and prove the optimality condition fo	r feasible vectors
	for Linear programming problems and Dual Linear programm	ing problems.
	CO3: find an optimal solution to a transportation problem	and assignment
	problem.	
	CO4 : understand integer and mixed integer programming and	its role in the real
	world.	
	CO5 : understand and describe games & strategies and invento	
	Syllabus	No. of Lectures
• •	es of OR models, formulation of LPP, Graphical method, nded LPPs, simplex method, Big-M method, Two-Phase	10
Unit-II: Duality theo Duality and duality the	bry neorems, Dual simplex method, sensitivity analysis.	8
Unit-III: Transport	ation problems	
Transportation proble	Transportation problems and assignment problems. 7	
Unit-IV: Integer programmingCutting plane and branch and bound techniques for all integer and mixed integerprogramming problems.		5
Unit-V: Game Theory and Inventory ModelsGraphical method and linear programming method for rectangular games, saddlepoint, and the notion of dominance.Inventory models: Concept of EOQ, Inventory problems with no shortages,Inventory problems with shortages, Inventory Control Techniques.		13

43

Text Books	 Swarup Kanti, Gupta P. K. and Man Mohan, An Introduction to management Science: Operations Research, Sultan Chand & Sons, Educational Publishers, New Delhi, 16th Ed., 2012. Ravindran A., D. T. Phillips and J. J. Solberg, Operations Research: Principles and Practice, John Wiley and Sons, NY, 2nd Ed., 2012.
References Books	 Bronson R. and Naadimuthu G., <i>Schaum's Outline of Operations Research</i>, McGraw-Hill Education, 1981. Hillier F. S. and Liberman G. J., Introduction to Operation Research, McGraw-Hill, 7th Ed., 2001.

Course Title	Operation Research	
Course Code	MA708	
Credits	4	
Course Category	CC	
Year / Semester	II / III	
Prerequisite Courses	NIL	
	3 1 0	
Course Objectives	The course aims to introduce students to use quantitative me techniques for effective decisions-making; model formula applications that are used in solving business decision problems.	
Course Outcomes	After studying this course the student will be able to CO1: formulate some real life problems into Linear programming CO2: use the simplex method to find an optimal vector for the stand programming problem and the corresponding dual problem. CO3: prove the optimality condition for feasible vectors ff programming problem and Dual Linear programming problem. CO4: find optimal solution of transportation problem and a problem CO5: describe the steady-state solutions of Markovian queuing mo	dard linear for Linear assignment
	Syllabus	No. of Lectures
Unit-I: Basics of LPP		
	models, convex sets, graphical method, infeasible and unbounded , big-M method, two phase method, revised simplex method.	8
•	Unit-II: Duality theory	
-	Dual simplex method, sensitivity analysis, parametric linear programming. 0	
Unit-III: Transportation problems Transportation problems and assignment problems.		8
Cutting plane and bra	Unit-IV: Integer programming Cutting plane and branch and bound techniques for all integer and mixed integer 8 programming problems.	
notion of dominance,	linear programming method for rectangular games, saddle point, queuing theory, steady-state solutions of Markovian queuing I with limited waiting space, M/M/C, M/M/C with limited space,	10
	Total No. of Lectures	42
Text Books	 Taha H. A., Operations Research: An Introduction, MacMilla NY, 9th Ed., 2013. Ravindran A., D. T. Phillips and J. J. Solberg, Operat Research: Principles and Practice, John Wiley and Sons, NY Ed., 2012. 	n Pub Co., tions
References Books	 Bronson R. and Naadimuthu G., Schaum's Outline of Operatic Research, McGraw-Hill Education, 1981. Hillier F. S. and Liberman G. J., Introduction to Operation Res McGraw-Hill, 7th Ed., 2001. 	

Course Title	Differentiable Manifold	
Course Code	MA709	
Credits	4	
Course Category	CC	
Year / Semester	II / III	
Prerequisite Courses	Calculus/real analysis of functions of one and several variables	-
	including the implicit and inverse function theorem and linear alge	bra.
L T P		
Course Objectives	The primary objective of this course is to provide basic know	wledge of
	manifolds, sub manifolds and geometry of manifolds.	
Course Outcomes	After studying this course the student will be able to	
	CO1: understand about differentiation of functions of several variables,	
	tangent vector, and vector field.	
	CO2: understand the differential forms and Connections.	
	CO3: describe the covectors, covariant and contravariant tensors	
	CO4: understand the torsion and curvature of a connection, structur	e equation
	of Cartan, Bianchi's identities.	
	CO5: understand the affine connection, parallelism, Geodesic	covariant
	differentiation of tensors.	
	Syllabus	No. of Lectures
UNIT I: Calculus of \mathbb{R}	2n 🖌 🖌	
Differentiable function	s from $\mathbb{R}n \to \mathbb{R}m$, Chain rule, Directional derivatives, Differential	8
of a map, Chain rule for	differentials, Inverse mapping theorem, Implicit function theorem.	
UNIT II: Manifold an	d its differentiable structure	
Topological manifolds,	Differentiable atlas, Smooth maps, Diffeomorphism, Equivalent	12
atlases, Differentiable s	tructure on a manifold, Space of smooth maps, Tangent vectors and	12
tangent space, Differen	tial of a smooth map.	
UNIT III: Submanifo	ds, Vector fields and Covectors	
Immersion, Embedding	g and Submanifolds, Vector fields, Lie algebra of vector fields,	
Integral curve of a vec	ctor field, Covectors and Cotangent spaces, Pull back of a linear	12
differential form, One p	arameter group of transformation, Exponential map, Covariant and	
Contravariant tensors, I	Laws of transformation for the components of tensors.	
UNIT IV: Differential	forms and Connection	
Differential forms, Ex	terior product, Grassman algebra of forms, Exterior derivative,	10
Affine Connection, Par	allelism, Geodesic Covariant differentiation of tensors, Torsion and	10
Curvature of a Connect	ion, Structure equation of Cartan, Bianchi's identities.	
	Total No. of Lectures	42
Text Books	1. Boothby W. M., An Introduction to Differentiable Man	
	Riemannian Geometry, Academic Press, Revised Ed, 2003	
References Books	1. Matsushima Yozo., Differentiable Manifolds, Blu	e Collar
	Scholar/Kindle; 2 nd Edition, 2019.	
	2. Kumaresan S., A Course in Differential Geometry and L	he groups,
	Hindustan Book Agency, 2002.	

Course Title	Mathematical Modelling and Simulations	
Course Code	MA746	
Credits	4	
Course Category	DSE	
Year / Semester		
Prerequisite Courses	Differential equation and optimization theory.	
L T P	3 1 0	
Course Objectives	The goal of the course is to introduce students to the element	nts of the
	mathematical modeling process, the basic rules of logic, including axioms or assumptions, logical arguments, and rigorous pr formulation of conjectures by abstracting general principles from e	the role of roofs and
Course Outcomes	After studying this course the student will be able to	
	 CO1: translate everyday situations into mathematical statements which can be solved/analyzed, validated, and interpreted in contex CO2: identify assumptions which are consistent with the context of problem and which in turn shape and define the mathematical characterization of the problem. CO3: revise and improve mathematical models so that they will be correspond to empirical information and/or will support more realia assumptions. CO4: assess the validity and accuracy of the approach relative to the requirement. CO5: apply tools to mathematically analyze and solve con problems. 	t. of the etter stic ne problem
	Syllabus	No. of
		Lectures
building mathematical	rties of models, model classification and characterization, steps in models, sources of errors, and dimensional analysis. tionality, Modeling using Geometric similarity; graphs of functions	8
functions as models. Fitting models to data square criterion,	ortionality, Modeling using Geometric similarity; graphs of a graphically, Analytic methods of model fitting, Applying the least models, Cubic Spline models.	8
Unit III: Discrete Pro	babilistic & Optimization Modeling	
Probabilistic modeling with discrete system; Modeling components & System Reliability; Linear Regression. Linear Programming – Geometric solutions, Algebraic Solutions, Simplex Method and Sensitivity Analysis.		8
Population Growth, Grapproximation methods	th a Differential Equations raphical solutions of autonomous differential equations, numerical s Euler's Method and R.K. Method. Epidemic models, Euler's method for systems of Differential	8

Unit V : Simulation M	odeling	
Discrete-Evnt Simulation	on, generating random numbers; simulating probabilistic behavior;	
Simulation of Inventory	model and Queuing Models using C program.	10
Other Types of simulati	on—Continuous Simulation, Monte-Carlo simulation. Advantages,	
disadvantages and pitfa	lls of simulation	
	Total No. of Lectures	42
Text Books	1. Frank R. Giordano, Mawrice D Weir & William P. Fox, A fi	
	in Mathematical Modeling, 3rd Edition, Thomson Brooks/Co	ole, Vikas
	Publishing House (P) Ltd., 2003.	
	2. Murray J.D., Mathematical Biology - I, 3rd Edition,	Springer
	International Edition, 2004.	
	3. Kapoor J.N., Mathematical Models in Biology and Medic	cine, East
	West Press, New Delhi, 1985.	
References Books	1. Robert E. Shannon, Systems Simulation: The Art and	Science,
	Prentice Hall, U.S.A, 1975.	<i>•</i>
	2. Law Averill M. & Kelton W. David, Simulation Mode	eling and
	Analysis, 3 rd Edition, Tata McGraw Hill, 1999.	-

Course Title	Introduction to Mathematical Finance	
Course Code	MA747	
Credits	4	
Course Category	DSE	
Year / Semester	II / III	
Prerequisite Courses	Exposure to multivariable calculus, linear algebra, and probability.	
L T P	3 1 0	>
Course Objectives	The goal of the course is to provide the students with knowledge of mathematical and computational techniques that are required for a v of quantitative positions in the financial sector and to develo appreciation of the major issues involved in rigorous advances in t financial mathematics.	wide range op student
Course Outcomes	After studying this course the student will be able to	
	CO1 : understand the mathematical foundations of quantitative fina	ance.
	CO2 : understand the standard and advanced quantitative methodo techniques of importance to a range of careers in investment banks financial institutions.	and other
	CO3 : appreciation of emerging theory and techniques in the area o mathematics.	n mancial
	CO4 : create and evaluate potential models for the price of shares.	
	CO5 : construct, evaluate and analyze models for investments and s	securities.
	Syllabus	No. of
		Lectures
	s of the financial markets nancial markets, meaning of notions like asset portfolio derivatives ons forwards etc.).	8
Unit-II: Asset pricing		
Binomial asset pricing period model. Risk-ne		8
Binomial asset pricing period model. Risk-ne neutral valuation of Eu	model model under no arbitrage condition single-period model, multi- utral probabilities, martingales in the discrete framework, risk- ropean and American options under no arbitrage condition in the	8
Binomial asset pricing period model. Risk-ne neutral valuation of Eu Binomial framework. Unit-III: Black-Schold	model model under no arbitrage condition single-period model, multi- utral probabilities, martingales in the discrete framework, risk- ropean and American options under no arbitrage condition in the	
Binomial asset pricing period model. Risk-ne neutral valuation of Eu Binomial framework. Unit-III: Black-Schole Random walk and Bi formula, properties of E	model model under no arbitrage condition single-period model, multi- utral probabilities, martingales in the discrete framework, risk- ropean and American options under no arbitrage condition in the es formula rownian motion, Geometric Brownian motion, Black-Scholes Black-Scholes option cost, estimation of sigma, pricing American	8
Binomial asset pricing period model. Risk-ne neutral valuation of Eu Binomial framework. Unit-III: Black-Schole Random walk and Bi	model model under no arbitrage condition single-period model, multi- utral probabilities, martingales in the discrete framework, risk- ropean and American options under no arbitrage condition in the es formula rownian motion, Geometric Brownian motion, Black-Scholes Black-Scholes option cost, estimation of sigma, pricing American	
Binomial asset pricing period model. Risk-ne neutral valuation of Eu Binomial framework. Unit-III: Black-Schole Random walk and Bu formula, properties of E put option and Europea Unit-IV: Portfolio ma	model model under no arbitrage condition single-period model, multi- utral probabilities, martingales in the discrete framework, risk- ropean and American options under no arbitrage condition in the es formula rownian motion, Geometric Brownian motion, Black-Scholes Black-Scholes option cost, estimation of sigma, pricing American an call option.	
Binomial asset pricing period model. Risk-ne neutral valuation of Eu Binomial framework. Unit-III: Black-Schold Random walk and Bu formula, properties of E put option and Europea Unit-IV: Portfolio ma Risk, risk and expected	model model under no arbitrage condition single-period model, multi- utral probabilities, martingales in the discrete framework, risk- ropean and American options under no arbitrage condition in the es formula rownian motion, Geometric Brownian motion, Black-Scholes Black-Scholes option cost, estimation of sigma, pricing American an call option. magement I return on a portfolio, capital asset pricing model: capital market	
Binomial asset pricing period model. Risk-ne neutral valuation of Eu Binomial framework. Unit-III: Black-Schole Random walk and Bi formula, properties of E put option and Europea Unit-IV: Portfolio ma Risk, risk and expected line, beta factor and sec	model model under no arbitrage condition single-period model, multi- utral probabilities, martingales in the discrete framework, risk- ropean and American options under no arbitrage condition in the es formula rownian motion, Geometric Brownian motion, Black-Scholes Black-Scholes option cost, estimation of sigma, pricing American an call option. magement I return on a portfolio, capital asset pricing model: capital market	8
Binomial asset pricing period model. Risk-ne neutral valuation of Eu Binomial framework. Unit-III: Black-Schole Random walk and Bu formula, properties of E put option and Europea Unit-IV: Portfolio ma Risk, risk and expected line, beta factor and sec Unit-V: Arbitrage: Arbitrage theorem, m	model model under no arbitrage condition single-period model, multi- utral probabilities, martingales in the discrete framework, risk- ropean and American options under no arbitrage condition in the es formula rownian motion, Geometric Brownian motion, Black-Scholes Black-Scholes option cost, estimation of sigma, pricing American an call option. magement I return on a portfolio, capital asset pricing model: capital market	8
Binomial asset pricing period model. Risk-ne neutral valuation of Eu Binomial framework. Unit-III: Black-Schole Random walk and Bu formula, properties of E put option and Europea Unit-IV: Portfolio ma Risk, risk and expected line, beta factor and sec Unit-V: Arbitrage: Arbitrage theorem, m	model model under no arbitrage condition single-period model, multi- utral probabilities, martingales in the discrete framework, risk- ropean and American options under no arbitrage condition in the es formula rownian motion, Geometric Brownian motion, Black-Scholes Black-Scholes option cost, estimation of sigma, pricing American an call option. magement I return on a portfolio, capital asset pricing model: capital market curity market line. multi-period binomial model, hedging: delta hedging, Greek	8

Text Books	1. Ross S. M., An Introduction to Mathematical Finance, Cambridge
	University Press, 1999.
	2. Capinski M and Zastawniak T., Mathematics for Finance: An
	Introduction to Financial Engineering, Springer-Verlag, London,
	2003.
References Books	1. Luenberger D. G., Investment Science, Oxford University Press, NY,
	1998.
	2. Hull J. C., Options, Futures and Other Derivatives, Prentice Hall Inc.,
	Upper Saddle River, 4 th Ed., 2000.
	3. Lamberton D and Lapeyre B, Introduction to Stochastic Calculus Applied
	to Finance, Chapman and Hall, London, 1996.

Course Title	Statistics through SPSS	
Course Code	MA769	
Credits	4	
Course Category	DSE	
Year / Semester		
Prerequisite	Exposure to statistics.	
Courses	Exposure to statistics.	
L T P	3 0 2	
Course Objectives	To familiar and to develop learning mindsets to analyze stati through SPSS software and to learn the basic syntax, coding and to aid in data analysis.	
Course Outcomes	After studying this course the student will be able to CO1: learn basic workings of SPSS and perform a wide rang management tasks in SPSS with the understanding of different typ and scales of their measurement. CO2: plot various kinds of chart and graph for analysis of data. CO3: obtain descriptive statistics and basic inferential sta comparisons using SPSS. CO4: apply basic statistical parametric and non-parametric tes given data. CO5: carry out correlation, regression and factor analysis through SPSS.	pes of data tistics for sts for the
	Syllabus	No. of Lectures
and multivariate data. SPSS data file: Openi	quantitative data, Cross-sectional and time series data, Univariate Scales of measurement of data. ng a data file in SPSS, SPSS Data Editor, Creating a data file, ing data, Missing values, Editing SPSS output, Copying SPSS PSS, Importing data.	8
Unit-II: Descriptive so Measures of central ter	tatistics with SPSS adency, Dispersion, Skewness, Kurtosis.	8
Unit-III: Charts and g Frequencies, Bar charts	graphs with SPSS s, Pie charts, Line graphs, Histograms, Box plots.	8
	tests using SPSS , F-test, One way and Two way ANOVA, Non-parametric tests- rank, Maan Whitney U and Wilcoxon signed rank test.	8
	and regression using SPSS regression, Multiple regression. Factor analysis using SPSS.	10
	Total No. of Lectures	42
Text Books	 Gupta S.L. and Gupta H., SPSS for Researchers, Internati House Pvt. Ltd, 2011. Field A., Discovering Statistics using SPSS, SAGE Public Ed. 2013. 	
References Books	 Gupta V., SPSS for Beginners, VJ Books Inc., 1999. Rajathi A. and Chandran P., SPSS for you, MJP Publishe 	rs, 2010.

Course Title	Documentation in Latex	
Course Code	MA716	
Credits	2	
Course Category	SEC	
Year / Semester	II / III	
Prerequisite Courses		
L T P	0 0 4	
Course Objectives	Installation and basic handling of the software, teach the basics introduce advanced techniques for writing mathematics, introduce techniques for editing and formatting documents and prepar documents such as use of Latex in daily academic and official wo	advanced ring large
Course Outcomes	After studying this course the student will be able to CO1 : Execute typesetting of journal articles, technical reports, thesis, boo and slide presentations.	
	CO2: Control over large documents containing sectioning, cross-r tables and figures.	eferences,
	CO3: Typesetting of complex mathematical formulae.	
	CO4: Advanced typesetting of mathematics with AMS-LaTeX.	
	CO5: Automatic generation of table of contents, bibliographies an	d indexes.
	Syllohus	No. of
	Syllabus	No. of Lectures
Unit-I: Installation Installation of Latex ar	nd editors. Introduction of Latex and different editors.	4
	ocument typesetting. Mathematical equation typing and editing. articles, Technical reports, Thesis, Books.	4
Unit-III: Tables & Figures and		4
Unit-IV: Bibliograph	y	
Preparation of bibliogr	aphy.	4
Unit-V: Beamer Slide preparation using	g Beamer.	4
	Total No. of Lectures	20
Text Books	 Lamport Laslie, Latex: A Document Preparation System, Edition), 1994. 	
References Books	1. Gratzer George, Practical Latex, Springer, 2014.	

Course Title	Measure Theory and Integration	
Course Code	MA717	
Credits	4	
Course Category	CC	
Year / Semester	II / IV	
Prerequisite Courses	Real analysis	
L T P	3 1 0	
Course Objectives	To develop an understanding of the basic concepts of the theory of	of measure
	and integration, the main proof techniques in the field, and apply	the theory
	abstractly and concretely, and use measure theory in Riemann i	integration
	and work with Lebesgue measure and to exploit its special prop	-
Course Outcomes	After studying this course the student will be able to	
	CO1: understand how Lebesgue measure on R is defined,	
	CO2: understand basic properties are measurable functions,	
	CO3: understand how measures may be used to construct integr	
	CO4: know the basic convergence theorems for the Lebesgue in	itegral,
	CO5: understand the relation between differentiation and	Lebesgue
	integration.	
	Syllabus	No. of
		Lectures
Unit I: Lebesgue Measu		
_	e, The s-Algebra of Lebesgue Measurable Sets, Outer and Inner	0
Approximation of Lebes	gue Measurable Sets, Countable Additivity, Continuity and the	8
Borel-Cantelli Lemma, N	Non-measurable Sets.	
Unit-II: Lebesgue Func	tion	
	Canton-Lebesgue Function, Sums, Products and Compositions of	
	nctions, Sequential Pointwise Limits and Simple Approximation,	8
-		
Littlewoods s three princ	iples, Egoroff's Theorem and Lusin's Theorem.	
Unit III: The Lebesgue	Integration	
The Lebesgue Integral o	f a Bounded Measurable Function over a Set of Finite Measure,	
The Lebesgue Integral of	of a Measurable Nonnegative Function; The General Lebesgue	
-	ditivity and Continuity of Integration, Uniform Integrability,	8
-	nd Tightness, Convergence in measure, Characterizations of	
Riemann and Lebesgue I		
Unit IV: Differentiation	and Lebesgue Integration	
Continuity of Monotone	Functions, Differentiation of Monotone Functions, Functions of	8
Bounded Variation, Abso	olutely Continuous Functions, Integrating Derivatives.	-
Unit IV. The In Success		
Unit IV: The Lp Spaces		
-	The Inequalities of Young, Hölder and Minkowski, The L ^p spaces,	
	arability, The Riesz Representation for the Dual of L^p , Weak	10
	e in L ^p , Weak Sequential Compactness, The Minimization of	
Convex Functionals.		
	Total No. of Lectures	42

Text Books	 Royden I. H.L. and Fitzpatrick P.M., Real Analysis, 4th Ed. New Jersey: Pearson Education Inc., 2013.
References Books	 Halmos P. R., Measure Theory, Springer, 2014. Munroe M.E., Introduction to measure and integration, Addison Wesley, 1959. Barra G. de, Measure theory and integration, New Age, 1981. Jain P.K. and Gupta V.P., Lebesgue measure and integration, New Age, 1986.

Course Title	Dynamical Systems	
Course Code	MA727	
Credits	4	
Course Category	DSE	
Year / Semester	II / IV	
Prerequisite	Fluid Dynamics	
Courses		
L T P	3 1 0	
Course Objectives	The goal of the course to introduce the students with the o	1
	posedness of differential equations, to familiarize with Bifur	rcations in 1Dand
	2D flows, chaos, and exposure to stability analysis.	
Course Outcomes	After studying this course the student will be able to	
	CO1: understand the Lipschitz condition, well-posednes	ss of differential
	equation and contraction mapping theorem.	
	CO2: describe the stability and bifurcation.	
	CO3: understand nonlinear autonomous system in 2D flow	ws.
	CO4: apply variable gradient method.	
	CO5: understand the chaos and attractors.	No. of
	Syllabus	No. of Lectures
Unit-I: Mathematical	nreliminaries	Lectures
	compact set, dense set, continuity of functions, Lipschitz	
1 · · · ·	ctions, vector space, normed linear space, inner product	9
	of ordinary differential equations, Lipschitz continuity and	,
contraction mapping th		
Unit-II: One-dimensi		
	ity, linear stability analysis, saddle- node bifurcation,	9
	n, pitchfork bifurcation, flows on the circle.	
Unit-III: Two-dimen		
Linear systems, nonlin	ear autonomous systems, phase portraits, fixed points and	10
	tive systems, index theory, limit cycles, Poincare	10
	endixson's criteria, Lienard systems.	
Unit-IV: Lyapunov s	tability	
Variable gradient meth	od, LaSalle's invariance property, transcritical and	10
1	Hopf bifurcation, Poincare maps.	
Unit-V: Chaos		4
Introduction to chaos a		
Total No. of L		42
Text Books	1. Strogatz S. H., Nonlinear Dynamics and Chaos, Per	rseus books
	publishing, 1994.	
	2. Ricardo H. J., A Modern Introduction to Differentia	al Equations,
	Academic Press, 2 nd Ed., 2009.	
	3. Khalil H. K., Nonlinear Systems, PHI, 1996.	
		. 1.0
References Books	1. Wiggins S., Introduction to Applied Nonlinear Dyn	amical Systems
	and Chaos, Springer, 1996.	4 2007
	2. Meiss J. D., Differential Dynamical Systems, SIAM	
	3. Grimshaw R., Nonlinear Ordinary Differential Equa	auons,
	Blackwell Scientific Publications, 1990.	

Course Title	Number Theory and Cryptography	
Course Code	MA719	
Credits	4	
Course Category	CC	
Year / Semester	II / IV	
Prerequisite Courses	Linear algebra and Discrete Mathematics	
LTP	3 1 0	
Course Objectives	The goal of the course is to give a simple account of classical numl	per theory,
	prepare students to graduate-level courses in number theory and al	gebra, and
	to demonstrate applications of number theory and exposure to cryp	otography.
Course Outcomes	After studying this course the student will be able to	
	CO1: understand the properties of divisibility and prime numbers	, compute
	the greatest common divisor and least common multiples and har	
	Diophantine equations.	
	CO2 : understand the operations with congruences, linear and	non-linear
	congruence equations	non mical
	CO3 : understand and use the theorems: Chinese Remainder	Theorem
		Theorem,
	Lagrange theorem, Fermat's theorem.	. 11
	CO4 : understand continue fractions and will be able to approxima	te reals by
	rationales.	
	CO5: understand the basics of RSA security and be able to break the	e simplest
	instances.	
	Syllabus	No. of Lectures
Unit 1:		
Prime numbers and d	livisibility, Number system, Divisibility and properties, Prime	
	Fundamental theorem of arithmetic, Euclid's lemma, Division	12
	pers and applications, Linear Diophantine equation, prime counting	12
function, Goldbach con		
Unit 2:		
	nd properties, Divisor sum formula for $\Box(n)$, Euler totient function	
	ula for \Box (n), Relation connecting \Box and $\Box \Box$ Product formula for	11
\Box (n), Multiplicative fu		
Unit 3:		
	Basic properties, Congruence and equivalence relation, Simple	
	classes, Linear congruences, Congruence relation conditions for	11
	Fermat theorem, Little Fermat theorem, Chinese reminder theorem.	
Unit 4:	$\mathbf{D}\mathbf{C}\mathbf{A}$ an equation and decompliant the substitution $(1 + 2 + 2) = 2$	
	RSA encryption and decryption, the equation $x^2 + y^2 = z^2$, Fermat's	8
Last theorem.		
	Total No. of Lectures	42
Text Books	1. David Sankara and Burton M., Elementary Number Theor Tata McGraw-Hill, Indian reprint, 2007.	y, 6th Ed.,
References Books	1. Jones A. & Jones M., Elementary Number Theory, Springer	
LUCCI CHECK DOUND	publications, 1998.	
	 Stein William, Elementary Number Theory, Springer 2009. 	

Course Title	Classical Mechanics	
Course Code	MA759	
Course Code	4	
	4 CC	
Course Category Year / Semester	II / IV	
Prerequisite Courses	Exposure to Newton's laws and basic physics concepts.	
Course Objectives	To develop the understanding of moments of inertia and its application	ations in
Course Objectives	the dynamics of a rigid body rotating about a fixed point, concept	
	geometrical equations and Lagrange's equations of motion of a rig	
	principles of Hamiltonian, and introduction to Lagrange and Poiss	-
	brackets and its applications.	011
Course Outcomes	After studying this course the student will be able to	
	CO1 : study the path described by the particle moving under the initial study the path described by the particle moving under the initial study and study a	fluence of
	central force.	
	CO2: apply the concept of system of particle in finding moment in	nertia,
	directions of principle axes.	
	CO3: apply Euler's dynamical equations for studying rigid body n	
	CO4: represent the equation of motion for mechanical systems usi	ng the
	Lagrangian and Hamiltonian formulations of classical mechanics.	
	CO5: obtain canonical equations using different combinations of g	generating
	functions and subsequently developing Hamilton Jacobi method to	o solve
	equations of motion.	
	Syllabus	No. of Lectures
Unit – I: Moment of I		Lectures
	of inertia, Angular momentum of a rigid body, Principal axes and	
	ertia of a rigid body, Kinetic energy of a rigid body rotating about	
	al ellipsoid and equimomental systems, Coplanar mass	8
	notion of a rigid body. (Relevant topics from the book of	
Chorlton).		
Unit II. Ence & com		
Unit – II: Free & cons		
	strained systems	
Constraints and their cl	assification, Holonomic and non-holonomic systems, Degree of	
Constraints and their cl freedom and generalize	assification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement	8
Constraints and their cl freedom and generalize of principle of virtual v	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal	8
Constraints and their cl freedom and generalize of principle of virtual v	assification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement	8
Constraints and their cl freedom and generalize of principle of virtual v constraints, General eq	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints,	8
Constraints and their cl freedom and generalize of principle of virtual v constraints, General eq Unit-II: Lagrange equ	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints,	8
Constraints and their cl freedom and generalize of principle of virtual v constraints, General eq Unit-II: Lagrange equ Lagrange equation of th	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints,	8
Constraints and their cl freedom and generalize of principle of virtual v constraints, General eq Unit-II: Lagrange equ Lagrange equation of tl generalized forces, Lag	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints, nations he first kind. D' Alembert principle, Independent coordinates and	8
Constraints and their cl freedom and generalized of principle of virtual w constraints, General eq Unit-II: Lagrange equ Lagrange equation of tl generalized forces, Lag accelerations. Uniquent	 lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints, nations he first kind. D' Alembert principle, Independent coordinates and grange equations of the second kind, Generalized velocities and 	
Constraints and their cl freedom and generalized of principle of virtual w constraints, General eq Unit-II: Lagrange equ Lagrange equation of tl generalized forces, Lag accelerations. Uniquent	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints, nations he first kind. D' Alembert principle, Independent coordinates and grange equations of the second kind, Generalized velocities and ess of solution, Variation of total energy for conservative fields. Lagrangian function $L(t, Q_i, \dot{q}_i)$, Lagrange equations for potential	
Constraints and their cl freedom and generalized of principle of virtual w constraints, General eq Unit-II: Lagrange equ Lagrange equation of tl generalized forces, Lag accelerations. Uniquend Lagrange variable and forces, Generalized mod	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints, nations he first kind. D' Alembert principle, Independent coordinates and grange equations of the second kind, Generalized velocities and ess of solution, Variation of total energy for conservative fields. Lagrangian function $L(t, Q_i, \dot{q}_i)$, Lagrange equations for potential omenta pi.	
Constraints and their cl freedom and generalized of principle of virtual w constraints, General eq Unit-II: Lagrange equ Lagrange equation of tl generalized forces, Lag accelerations. Uniquend Lagrange variable and forces, Generalized mo Unit – III : Hamiltoni	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints, nations he first kind. D' Alembert principle, Independent coordinates and grange equations of the second kind, Generalized velocities and ess of solution, Variation of total energy for conservative fields. Lagrangian function $L(t, Q_i, \dot{q}_i)$, Lagrange equations for potential menta pi.	
Constraints and their cl freedom and generalized of principle of virtual v constraints, General eq Unit-II: Lagrange equ Lagrange equation of tl generalized forces, Lag accelerations. Uniquend Lagrange variable and forces, Generalized mo Unit – III : Hamiltoni Hamiltonian variable at	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints, nations he first kind. D' Alembert principle, Independent coordinates and grange equations of the second kind, Generalized velocities and ess of solution, Variation of total energy for conservative fields. Lagrangian function $L(t, Q_i, \dot{q}_i)$, Lagrange equations for potential omenta pi. an equation nd Hamiltonian function, Donkin theorem, Ignorable coordinates,	8
Constraints and their cl freedom and generalized of principle of virtual w constraints, General eq Unit-II: Lagrange equ Lagrange equation of tl generalized forces, Lag accelerations. Uniquent Lagrange variable and forces, Generalized mod Unit – III : Hamiltoni Hamiltonian variable and Hamilton canonical equ	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints, nations he first kind. D' Alembert principle, Independent coordinates and grange equations of the second kind, Generalized velocities and ess of solution, Variation of total energy for conservative fields. Lagrangian function $L(t, Q_i, \dot{q}_i)$, Lagrange equations for potential menta pi. an equation nd Hamiltonian function, Donkin theorem, Ignorable coordinates, uations, Routh variables and Routh function R, Routh equations,	
Constraints and their cl freedom and generalize of principle of virtual v constraints, General eq Unit-II: Lagrange equ Lagrange equation of tl generalized forces, Lag accelerations. Uniquent Lagrange variable and forces, Generalized mo Unit – III : Hamiltoni Hamiltonian variable and Hamilton canonical equ Poisson Brackets and th	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints, nations he first kind. D' Alembert principle, Independent coordinates and grange equations of the second kind, Generalized velocities and ess of solution, Variation of total energy for conservative fields. Lagrangian function $L(t, Q_i, \dot{q}_i)$, Lagrange equations for potential menta pi. an equation nd Hamiltonian function, Donkin theorem, Ignorable coordinates, uations, Routh variables and Routh function R, Routh equations, heir simple properties, Poisson identity, Jacobi – Poisson theorem.	8
Constraints and their cl freedom and generalized of principle of virtual w constraints, General eq Unit-II: Lagrange equ Lagrange equation of th generalized forces, Lag accelerations. Uniquent Lagrange variable and forces, Generalized mod Unit – III : Hamiltoni Hamiltonian variable at Hamilton canonical equ Poisson Brackets and th Hamilton action and Ha	lassification, Holonomic and non-holonomic systems, Degree of ed coordinates, Virtual displacement and virtual work, Statement work (PVW), Possible velocity and possible acceleration, Ideal uation of dynamics for ideal constraints, nations he first kind. D' Alembert principle, Independent coordinates and grange equations of the second kind, Generalized velocities and ess of solution, Variation of total energy for conservative fields. Lagrangian function $L(t, Q_i, \dot{q}_i)$, Lagrange equations for potential menta pi. an equation nd Hamiltonian function, Donkin theorem, Ignorable coordinates, uations, Routh variables and Routh function R, Routh equations,	8

Unit-V: Canonical Transformation

Necessary and sufficient condition for a canonical transformation, Univalent Canonical transformation, Free canonical transformation, Hamilton-Jacobi equation, Jacobi theorem, Method of separation of variables in HJ equation, Lagrange brackets, Necessary and 10 sufficient conditions of canonical character of a transformation in terms of Lagrange brackets, Jacobian matrix of a canonical transformation, Conditions of canonicity of a transformation in terms of Poison brackets, Invariance of Poisson Brackets under canonical transformation.

		Total No. of Lectures	42	
Text Books	Text Books1. Gantmacher F., Lectures in Analytic Mechanics, MIR Publi		lishers,	
		Moscow, 1975.		
	2.	Panat P.V., Classical Mechanics, Narosa Publishing Hous	P.V., Classical Mechanics, Narosa Publishing House, New	
	Delhi, 2005.			
	3.	Rana N.C. and Joag P.S., Classical Mechanics, Tata McG	raw- Hill,	
		New Delhi, 1991.		
References Books	1.	Louis N. Hand and Janet D. Finch, Analytical Mechanics	, CUP,	
		1998.		
	2.	Sankra Rao K., Classical Mechanics, Prentice Hall of Ind	lia, 2005.	
3. Chorlton F., <i>Textbook of Dynamics</i> , CBS Publishers,		v Delhi.		

Course Title	Stochastic Processes		
Course Code	MA756		
Credits	4		
Course Category	DSE		
Year / Semester	II / IV		
Prerequisite	Probability and Linear algebra.		
Courses			
L T P	3 1 0		
Course Objectives	The aim of this course is to provide a good understanding of the key concepts of stochastic processes.		
Course Outcomes			
Course Outcomes	After studying this course the student will be able to		
	CO1 : understand the definition, classification of Stochastic processes and		
	Markov chains.		
	CO2: define the concept of a homogeneous Poisson process, and	derive the	
	form of the distribution of the inter-arrival times.		
	CO3: decide whether a birth-death process has a stationary distribution.		
	CO4: calculate the expected number of renewals in a renewal pro	ocess.	
	CO5: define the concepts of a reliability function and k-out-of-n standby		
	system.		
	Syllabus	No. of	
TT *4 T		Lectures	
Unit- I			
	lefinition, classification and examples. Markov Chains: definition	8	
and examples, Transiti	on matrix, Order of a Markov chain, Markov chain as graphs.		
Unit – II			
Higher transition prob	babilities, Classification of states and chains. Determination of		
	bilities. Poisson Process: Introduction, Postulates, Properties and	10	
related distributions.			
Unit – III			
-	h and death process: Immigration-emigration process, Definitions	12	
and simple examples of	of renewal process in discrete and continuous time, Regenerative	12	
stochastic processes, N	Iarkov renewal, and semi-Markov processes.		
Unit – IV			
	th components in series, Systems with parallel components, k-out-		
		12	
	es parallel systems, Systems with mixed mode failures. Standby		
redundancy: Simple sta	andby system, k-out-of-n standby system.		
	Total No. of Lectures	42	
Text Books	1. Ross, S. M., "Stochastic Processes" Wiley India Pvt. Ltd.,	, 2nd Ed.,	
	2008.		
	2. Hoel, P.G. and Stone, C.J., "Introduction to Stochastic Processes",		
	Waveland Press, 1986.		
References Books	1. Medhi J., Stochastic Processes, New Age International Publishers,		
	2009.		
	2. Balagurusami E., Reliability Engineering, Tata McGraw Hill, New		
		,	
	Delhi, 1984.		

Course Title	Numerical Solutions of PDEs		
Course Code	MA758		
Credits	4		
Course Category	DSE		
Year / Semester	II / IV		
Prerequisite Courses			
L T P	3 0 2		
Course Objectives	Introduce the finite difference schemes (FDS), order of accuracy of		
	concept of stability convergence, dissipation and dispersion, and exposed to		
	FDS for hyperbolic, parabolic and elliptic PDE's.		
Course Outcomes	After studying this course the student will be able to		
	CO1 : apply FDS to solve partial differential equations.		
	CO2: describe the boundary conditions for different schemes.		
	CO3: understand the convergence estimate for parabolic equat	ion, well-	
	posed, and stable stable initial BVP.	~	
	CO4: solve parabolic and elliptic PDEs with ADI schemes	and FDS	
	respectively.		
	CO5: apply finite difference schemes to solve Poisson's equation.		
	Syllabus	No. of Lectures	
Unit-I: Linear stabilit	y and convergence		
	blic PDE's, finite difference schemes, convergence and consistency,	8	
	er and Von Neumann stability analysis for FDS.	-	
Unit-II: Dissipation a			
-	LxW and Crank-Nicolson finite difference schemes boundary	8	
_	prithm, dissipation and dispersion.	0	
Unit-III: Parabolic PI			
=	boundary conditions, finite difference schemes for parabolic and	8	
	quations, ADI scheme on square, boundary conditions and stability		
for ADI schemes.			
-	systems and estimations		
	ed IVPs scalar and systems, convergence estimates for smooth and		
non-smooth initial con	ditions, convergence estimate for parabolic differential equations,	10	
Lax-Richmyer equivale	ence theorem, well-posed and stable initial BVP, matrix method for		
stability.			
Unit-V: Elliptic PDE's	S		
Elliptic equations and	regularity estimates, maximum principle and boundary condition,	8	
finite difference scheme	es for Poisson's equation.		
	Total No. of Lectures	42	
Text Books	1. Thomas J. W., Numerical Partial Differential Equation	ns: Finite	
*	Difference Methods, Springer, 1998.		
	2. Strikwerda J. C., Finite Difference Schemes and Partial D	oifferential	
	Equations, SIAM, Philadelphia, 2nd Ed., 2004.		
References Books	1. Leveque R. J., Finite Difference Methods for Ordinary and Partial		
	Differential Equations, Steady State and Time Dependent Problems,		
	SIAM Philadelphia, 2007.		
	2. Smith G. D., Numerical Solution of Partial Differential Equations:		
	-		
	Finite Difference Methods, Oxford University press, 1977.		

Course Title	MOOC/SWYAM Course
Course Code	SWAY757
Credits	4
Course Category	DSE
Year / Semester	II / IV

Course Title	Project Thesis	
Course Code	MA726	
Credits	6	
Course Category	CC	
Year / Semester	II / IV	