DIT UNIVERSITY Dehradun

Detailed Course

Structureof

M.Sc. in Mathematics

Programme Name: M. Sc. Mathematics

Objectives:

The M.Sc. Mathematics programme provides students with rigorous and thorough knowledge of a broad range of pure and applied areas of mathematics. It is designed to train students with different professional goals, ranging from employment in academics or industry to basic training in foundations needed to pursue a Ph. D. in mathematics or mathematics-related fields.

Eligibility:

B. Sc. with Mathematics as a major subject.

Duration:

2 Years (4 semesters)

Programme Outcomes

PO1: Inculcate critical thinking to carry out scientific investigation objectively without being biased with preconceived notions.

PO2: Equip the student with skills to analyze problems, formulate a hypothesis, evaluate and validate results, and draw reasonable conclusions thereof.

PO3: Prepare students for pursuing research or careers in industry in mathematical sciences and allied fields

PO4: Imbibe effective scientific and/or technical communication in both oral and writing.

PO5: Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in mathematical sciences.

PO6: Create awareness to become an enlightened citizen with commitment to deliver one's responsibilities within the scope of bestowed rights and privileges.

PO7: Carry out development work as well as take up challenges in the emerging areas of Industry.

PO8: Demonstrate competence in using mathematical and computational skills to model, formulate and solve real life applications.

PO9: Acquire deep knowledge of different mathematical and computational disciplines so that they can qualify NET/ GATE examination.

PO10: Nurture problem solving skills, thinking, creativity through assignments, project work.

PO11: Articulating ideas and strategies for addressing a research problem

PO12: Demonstrate the ability to conduct research independently and pursue higher studies towards the Ph.D. degree in mathematics and computing.

Programme Specific Outcomes

PSO1 Communicate concepts of Mathematics and its applications.

Approved by the Academic Council at its 17th Meeting held on 24.03.2021

PSO2 Acquire analytical and logical thinking through various mathematical tools and techniques.

PSO3 Investigate real life problems and learn to solve them through formulating mathematical models.

PSO4 Attain in-depth knowledge to pursue higher studies and ability to conduct research.

Work as mathematical professional.

PSO5 Achieve targets of successfully clearing various examinations/interviews for placements in teaching, banks, industries and various other organizations/services.

CURRICULUM AND SYLLABUS

M. Sc. (Mathematics)

Total credits: 88

Year 1				Sei	mest	er 1
Category	Course Code	Course Name	L	Т	Р	Credit
CC	MA606	Real Analysis	3	1	0	4
CC	MA607	Linear Algebra	3	1	0	4
CC	MA608	Ordinary Differential Equations	3	1	0	4
CC	MA609	Mathematical Statistics	3	1	0	4
CC	MA616	Complex Analysis	3	1	0	4
SEC	MA617	Scientific Computing with MATLAB	-	-	4	2
Total			15	5	4	22

Year 1

Semester 2

Category	Course Code	Course Name	L	Т	Р	Credit
CC	MA618	Algebra	3	1	0	4
CC	MA619	Numerical Analysis	3	0	2	4
CC	MA626	Topology	3	1	0	4
CC	MA627	Partial Differential Equations	3	1	0	4
	MA646	Orthogonal Polynomials & Special functions				
DCE	MA647	Fuzzy Sets and Applications		3 1	0	4
DSE	MA648	Statistical Inference	З		0	4
	MA649	Integral Equation and Calculus of Variations				
SEC	MA628	Introduction to Python Programming	-	-	4	2
			15	5	4	22

Year 2

Course Т Category **Course Name** L Р Credit Code MA706 3 1 CC Fluid Dynamics 0 4 MA707 CC 3 1 0 4 **Functional Analysis MA708** CC **Operations Research** 3 0 4 1 MA709 Differentiable Manifold 3 1 0 4 CC MA746 Mathematical Modeling and Simulations 3 1 0 4 DSE MA747 Introduction to Mathematical Finance 3 4 MA748 0 2 Statistics through SPSS SEC MA716 Documentation in Latex 0 0 4 2 Total 14 4 8 22

Year 2

Category Course Code Course Name L Т Р Credit MA717 CC Measure and Integration Theory 3 1 4 _ MA718 CC 3 1 4 **Classical Mechanics** _ CC MA719 Number Theory & Cryptography 3 1 _ 4 MA749 Dynamical Systems MA756 **Stochastic Processes** 3 0 4 1 DSE SWAY757 MOOC/SWAYAM Course MA758 Numerical Solution of PDEs 3 0 2 4 Project MA726 Project (Research and seminar) 6 _ -Total 12 4 22

As per UGC (Credit Framework for Online Learning Courses through **SWAYAM**) Regulation 2016, DIT University strongly encourages the use of SWAYAM (Study Web of Active Learning by Young and Aspiring Minds) platform. Based on the availability of relevant courses on SWAYAM, students shall choose an online course on the recommendation of faculty advisor and the credits will be transferred.

Semester 4

Semester 3

Summary of the Credits

Year	Semester	Max Credits
1	1	22
	2	22
2	3	22
	4	22
	Total	84

Category wise classification of the Credit

Category		Credits	No. of Subjects
CC	Departmental Core Course	64	16
AEC	Ability Enhancement Course	6	3
DSE	Discipline Specific Elective	11	3
PRJT/THESIS	Project	6	1
	Total	88	23

Course Title	Real Analysis		
Course Code	MA606		
Credits	4		
Course Category	CC		
Year / Semester	I/I		
Prerequisite Courses	UG Level Courses of Real Analysis & Metric Space		
L T P			
Course Objectives	To develop the understanding of metric space and its different aspects, cont	inuity and	
	uniform continuity of a function, compactness, convergence of sequence, Cauchy		
	sequence and complete metric space, and Riemann integral and its properties,		
	continuity and differentiability of function of two variables.		
Course Outcomes	After studying this course the student will be able to		
	CO1: understand the countable and uncountable sets and will learn	Bolzano-	
	Weierstrass theorem.		
	CO2: understand the Riemannian integrals and Riemann- Stielties integr	al and its	
	properties		
	CO3: check whether an infinite series is convergence or not		
	CO4: understand inverse and implicit function theorems and its applications		
	CO5: apply the basic properties of metric space compactness and V	Vaiaretrace	
	cost apply the basic properties of metric space, compactness, and v	v elei su ass	
	approximation meorem.	NT C	
	Syllabus	NO. OI L octuros	
Unit 1 Real number sy	stoms	Lectures	
Flementary set theory finite countable and uncountable sets real number system as a complete			
ordered field Archimedean property supremum infimum Bolzano-Weierstrass theorem Heine			
Borel theorem.			
Unit 2 Differentiation	and integration		
Unit 2 Differentiation a	and integration	0	
Limit, continuity, unite	orm continuity, differentiability, mean value theorem, Riemann sums and	8	
Riemann integral, Riem	ann-Stieltjes integral and its properties, improper integrals.		
Unit 3 Sequences and s	series	8	
Sequences and series of	functions, convergence, uniform convergence, power series, Fourier series.	0	
Unit 4 Multi-variable o	calculus		
Functions of several v	ariables, directional derivatives, partial derivatives, derivative as a linear	8	
transformation, inverse	and implicit function theorems, maxima and minima.		
Unit 5 Metric spaces an	nd properties		
Basic concepts, continu	ous functions, completeness, Baire category theorem, contraction mapping		
theorem, connectednes	s, intermediate value theorem, compactness, Weierstrass approximation	10	
theorem.			
	Total No. of Lectures	42	
Text Books	1. Rudin W., <i>Principles of Mathematical Analysis</i> , Mc-Graw Hill, 1976.		
	2. E. Kreyszig, Introductory Fnctional Analysis with Applications, John Wiley	y and Sons,	
	2010.		
References Books	1. Royden H. L., <i>Real Analysis</i> , Macmillan Publishing Company, 1998.		
	2. Tao T., Analysis II, Hindustan Book Agency, Springer, 2015.		
	5. Apostol 1. M., <i>Mathematical Analysis</i> , Addison-Wesley, 1974.		
l	4. Simmons O. P., Topology and Modern Analysis, Kielger, 2005.		

Course Title	Linear Algebra		
Course Code	MA607		
Credits	4		
Course Category	CC		
Year / Semester	I/I		
Prerequisite Courses	Matrix Theory		
L T P	3 1 0		
Course Objectives	The aim of this course is introduce students with the fundamental concepts spaces, concepts of linear transformations, decomposition theorem, canoni and adjoint operators.	s of vector cal forms,	
Course Outcomes	After studying this course the student will be able to		
	CO1 : solve system of linear equations, find basis and dimension of spaces.		
	CO2: describe the concept of a basis for a vector space.		
	CO3: determine whether a linear transformation is diagonalizable or not.		
	CO4: express the linear transformations between vector spaces and to decide	whether a	
	product is an inner product		
	CO5: identify self-adjoint transformations and apply the spectral the	orem and	
	orthogonal decomposition of inner product spaces, the Jordan canonical form	to solving	
	systems of ordinary differential equations.	Ũ	
	Syllabus	No. of Lectures	
Unit 1 Linear System a	and Vector Spaces		
Systems of linear equation	ons, matrices and elementary row operations, row-reduced Echelon matrices,	8	
finite dimensional vector	r spaces, subspaces, linear dependence, basis, dimension.		
Unit-II: Linear transfo	ormations		
Linear transformations	and their matrix representations change of basis isomorphism rank and		
determinant of matrices	Rank-Nullity theorem linear functional and dual space annihilator double	8	
dual transpose of a line	ar transformation		
Unit III: Matrices and	its properties		
Figenvalues and aige	nts properties		
subgenvalues and eige	rme triangular forme Hermitian skew Hermitian and unitary matrices	10	
dinast sum dassum asiti	ins, trangular forms, Hermitian, skew-Hermitian and unitary matrices,		
direct-sum decompositio	ons, invariant direct sums, primary decomposition theorem.		
Unit-IV: Canonical for	ins in the second se	8	
Cyclic subspaces and an	inihilators, cyclic decomposition and rational forms, Jordan-canonical form.		
Unit-V: Inner product spaces			
Finite dimensional inner product spaces, linear operators on inner product spaces, orthonormal basis, 8			
Gram-Schmidt orthonormalization process, self-adjoint operators, quadratic forms.			
	Total No. of Lectures	42	
Text Books	1. Strang G., <i>Introduction to Linear Algebra</i> , Wellesley-Cambridge Press, 1993.	-	
D.f	2. HOITMAN K. and . Kunze K, <i>Linear Algebra</i> , 2 Ed., Prentice Hall of India, 200). 2004	
Kelerences Books	1. Kumaresan S., <i>Linear Algebra: A Geometric Approach</i> , Prentice-Hall of India, 2004.		
	3. Lang S., <i>Linear Algebra</i> , Springer Undergraduate Texts in Mathematics, 1989.		

Course Title	Ordinary Differential Equations			
Course Code	MA608			
Credits	MA000			
Course Category				
Vear / Semester				
Prerequisite Courses	Basic concepts of Calculus and geometry			
L T P	3 1 0			
Course Objectives	The aim of the course is to introduce students with the depth know	wledge of		
	differential equation with different forms of solution, like eigen value	and eigen		
	vector method, method of undetermined coefficients, method of va	riation of		
	parameters.			
Course Outcomes	After studying this course the student will be able to			
	CO1: express the existence and uniqueness theorem of differential equation	ns.		
	CO2: apply the method of undetermined coefficient to solve non-hor	nogeneous		
	differential equation with constant coefficient.	0		
	CO3: determine particular solutions to differential equations with given	boundary		
	conditions or initial conditions			
	$CO4$: to apply eigenvalue-eigenvector method to find solutions system of α	lifferential		
	equations	interential		
	CO5: describe L agendre polynomials and Bassal functions and their propa	rtion		
	COS. describe Legendre porynomials and Besser functions and then proper	Nf		
	Syllabus	NO. OI		
Unit-I: Existence and	uniqueness of solutions	Lectures		
Review of exact soluti	ons of first order ODE method of successive approximations. Lipschitz			
condition convergence	of successive approximations, existence and uniqueness of solutions of	10		
WP non local avistona	of solutions, existence and uniqueness of solutions to systems, existence	10		
and uniqueness of solutions to linear systems, equations of order r				
and uniqueness of solutions to linear systems, equations of order <i>n</i> .				
Unit-II: Second order	equations	_		
General solution of hor	nogeneous equations, non-homogeneous equations, Wronskian, method	8		
of undetermined coeffic	ients, method of variation of parameters.			
Unit-III: Boundary va	lue problems	6		
Sturm comparison theorem	rem, Sturm separation theorem, boundary value problems.	0		
Unit-IV: Series solutio	ns			
Series solution of secon	d order linear equations: ordinary points, regular singular points, Sturm-	10		
Liouville problems, Gr	een's functions, Legendre polynomials and properties, Bessel functions	10		
and properties.				
Unit-V: System of diff	erential equations			
Algebraic properties of	f solutions of linear systems, eigenvalue-eigenvector method of finding	8		
solutions, complex eiger	nvalues, equal eigenvalues.	-		
	Total No. of Lectures	42		
Text Books	1. Coddington E. A., An Introduction to Ordinary Differential Equations, PH	II Learning		
	1999.			
	2. Simmons G. F., Differential Equations with Applications and Historical No Machine Hill 1991	$tes, 2^{na}$ Ed,		
	MICUTAW- HIII, 1991. 3 Agarwal R P and O'Regan D An Introduction to Ordinary Differential	Fauations		
	Springer- Verlag, 2008.	Equations,		
References Books	1. Agarwal R. P. and Gupta R. C., Essentials of Ordinary Differential	Equations,		
	McGraw-Hill, 1993.			
	2. Braun M., Differential Equations and Their Applications, 3 ^{ra} Ed., Sprin	ger-Verlag,		
	1983. 3 Deo S. G. Raghavendra V. Kar P. and Lakshmikantham V. Tarthook of J.	Ordinary		
	Differential Equations, McGraw Hill Education, 3 rd Ed., 2015.	станит у		

Comment Title	Mathematical Statistics		
Course Title	Mathematical Statistics		
Course Code	MA009		
Creans Course Cotogory			
Voor / Somostor			
Prorequisite Courses	Basic concepts of set theory		
L T P	3 1 0		
Course Objectives	The aim of the course is to introduce the concepts and methods of proba	ability and	
course objectives	distribution theory and the tools which are used to develop the theory of	statistical	
	estimation and hypothesis testing.		
Course Outcomes	After studying this course the student will be able to		
	CO1: calculate conditional probability, covariance and correlation and	determine	
	independence of random variables.		
	CO2: find the distribution of a function of random variables using the n	nethods of	
	distribution functions, transformations, and moment generating functions.		
	CO3: calculate probabilities and quartiles for sampling distributions relations	ated to the	
	probability distributions	lieu to the	
	CO4 : perform hypothesis tests for the mean: compute p-values and prob	abilities of	
	Type I and Type II errors	10111105 01	
	CO5 : construct point and interval estimators: evaluate their goodness (bias	variance	
	ween equared error)	, variance,	
	mean squared error).	NT C	
	Syllabus	NO. OI	
Unit-I: Probability		Lectures	
Definition and various ar	proaches of probability. Addition theorem Boole inequality Conditional		
probability and multiplic	products of probability, Addition theorem, Boore inequality, Conditional	8	
avanta Davas theorem and	dita applications		
Let II. Dayes theorem and			
Unit-II: Kandom variab	le and probability functions		
Definition and properties	of random variables, Discrete and continuous random variables, Probability		
mass and density function	ons, Distribution function. Concepts of bivariate random variable: joint,	12	
marginal and conditional of	distributions.		
Mathematical expectation	: Definition and its properties. Variance, Covariance, Moment generating		
function- Definitions and	their properties.		
Unit-III: Distributions			
Uniform, Bernoulli, Binor	nial, Poisson and Geometric distributions with their properties. Uniform,	8	
Exponential and Normal c	listributions with their properties.		
Unit-IV: Testing of hypo	venesis		
hypotheses Simple and co	impling distribution and standard error of estimate, Null and alternative	8	
two tailed tests. Two type	s of errors		
Unit V: Tests of significa	ince		
Large sample tests for single mean, Single proportion, Difference between two means and two 6			
proportions.			
	Total No. of Lectures	42	
Text Books	1. Hogg V. and Craig T., Introduction to Mathematical Statistics, 7th addition	on, Pearson	
	Education Limited-2014. 2 Mood A M. Gravbill E A. and D C. Roos. Introduction to the Theory of St.	atistics Ma	
	Graw Hill Book Company.	ausues, Me	
References Books	1. Speigel M., Probability and Statistics, Schaum Outline Series.		
	2. Gupta S.C. and Kapoor V.K., Fundamentals of Mathematical Statistics, S. Cha	nd	
	Pub., New Delhi.		

Course Title	Complex Analysis		
Course Code	MA616		
Credits	4		
Course Category	CC		
Year / Semester	I/I		
Prerequisite Courses	Basic concepts of Calculus.		
L T P	3 1 0		
Course Objectives	The aim of the course is to introduce the students with complex diff	ferentiable	
	functions, Cauchy integral theorem and formula, conformal mapping, a	nd convex	
	functions and their properties.		
Course Outcomes	After studying this course the student will be able to		
	COI : find the radius of convergence of power series, zeros and poles of	a complex	
	function.		
	CO2: to describe and apply the Morera's theorem, Liouville's theorem	orem, and	
	maximum and minimum modulus principles.		
	CO3: find Laurent series about isolated singularities, and determine resid	lues.	
	CO4: use residue theorem to evaluate different kinds of real integrals.		
	CO5: use conformal mapping between many kinds of domain.		
	C-ll-h	No. of	
	Synabus	Lectures	
Unit I: Analytic function	ns		
Analytic functions, harr	nonic functions, multi-valued functions, Cauchy-Riemann equations,	6	
convergence of power s	eries, radius of convergence of power series, and power series as an	0	
analytic function.			
Unit II: Singularities			
Taylor's series, Laurent	's series, zeros of analytical functions, singularities, classification of	8	
singularities, characterization of removable singularities and poles.			
Unit III: Integration			
Line and contour integr	ration, Cauchy's theorem, Cauchy integral formula, Cauchy integral		
formula for derivatives.	Cauchy integral formula for multiply connected domains. Morera's	12	
theorem Gauss mean v	alue theorem Cauchy inequality for derivatives Liouville's theorem	12	
fundamental theorem of a	lgebra, maximum and minimum modulus principles		
Unit IV. Mannings			
Dational functions, babay	ior of functions in the neighborhood of an assential singularity. Cauchy's	0	
residue theorem contour	integration problems. Mobiles transformation, and conformal mannings	0	
	integration problems, woords transformation, and conformal mappings.		
Unit v: Meromorphic F	uncuons	0	
Meromorphic functions	and argument principle, Schwarz lemma, Rouche's theorem, convex	8	
functions and their proper	rties, Hadamard 3-circles theorem.		
	Total No. of Lectures	42	
Text Books	1. ADIOWITZ M.J. and FOKAS A.S., Complex Variables: Introduction and A _j Cambridge University Press 2003	pplications,	
	2. Zill D.G. and Shanahan P.D., A First Course in Complex Analysis with A	pplications.	
	2nd ed., Boston: Jones and Bartlett Learning, 2010.		
References Books	1. Mathews J.H. and Howell R.W. Complex Analysis for Mathem	natics and	
Letter cheep Doons	<i>Engineering</i> , 6th ed., London: Jones and Bartlett Learning, 2011.		
	2. Brown J.W. and Churchill R.V., Complex Variables and Applications, 7t	h ed., New	
	York: McGraw-Hill, 2003.	1. D 1	
	3. Hahn L.S. and Epstein B., <i>Classical Complex Analysis</i> , London: Jones a Learning 2011	and Bartlett	
	Leanning, 2011.		

Course Title	Scientific Computing with Matlab	
Course Code	MA617	
Credits	2	
Course Category	SEC	
Year / Semester		
Prerequisite Courses	No specific prerequisites are needed.	
L T P		
Course Objectives	The main objective of the course is to provide a basic understanding of N	MATLAB,
U U	including popular toolboxes. The course consists of interactive lectures a	nd sample
	MATLAB problems given as assignments and discussed in class.	Concepts
	covered include basic use, graphical representations and tips for design	gning and
	implementing MATLAB code.	
Course Outcomes	After studying this course the student will be able to	
	CO1: use the MATLAB GUI effectively.	
	CO2: write simple programs in MATLAB to solve scientific and ma	thematical
	problems.	
	CO3: create and control simple plot and user-interface graphics	objects in
	MATLAB.	-
	CO4: use MATLAB effectively to analyze and visualize data.	
	CO5: use in-built functions to complete the different types of task.	
	Syllabus	No. of
	·	Lectures
Unit-I: Introduction to N	MATLAB	
Vector and matrix genera	tion, subscripting and the colon notation, matrix and array operations and	4
their manipulations, introduction to some inbuilt functions related to array operations. M-files:		
scripts and functions, edit	ing, saving m-files, and interaction between them.	
Unit-II: Two & Three-d	imensional Graphics	
Basic plots, change in axe	es and annotation in a figure, multiple plots in a figure, saving and printing	6
figures, mesh plots, surfac	ce plots and their variants.	
Unit-III: Relational and	Logical Operators	
Flow control using variou	as statements and loops including If-End statement, If-Else-End statement,	4
nested If-Else-End statem	ent, For-End and While-End loops with Break commands.	
Unit-IV: Introduction to	Built-in Functions	
Related to matrix inversion	on, eigenvalues, eigenvectors, condition number: for data representation: bar	
charts, histograms, pie ch	part, stem plots etc: for solving various type of differential equations: for	6
specialized plotting e.g. c	contour plots sphere and animations	
specialized proting e.g., e	Total No. of Lectures	20
Text Books	1 Gilat Amos MATLAB: An introduction with applications 5 th Edition Wi	lev India
	2014.	iey maia,
	2. Chadha Naresh Mohan, Programming in Matlab: With Applied Numerica	l Methods
	for Engineers and Scientists, ASIN: B08RH5N113, 2020.	
References Books	1. Chapra Steven, Applied Numerical Methods with Matlab for Engineers and	d
	Scientists, 4 th Ed., McGraw Hill, 2017.	
	2. Pratap Rudra, Getting Started with MATLAB: A Quick Introduction for Sc	ientists and
	Engineers, Oxford University Press, 2010.	

Course Title	Algebra		
Course Code	MA618		
Credits	4		
Course Category	CC		
Year / Semester	I/II		
Prerequisite Courses			
L T P	3 1 0		
Course Objectives	To develop the understanding of basic structures of algebra like groups, ri	ngs, fields	
Course Outcomes	After studying this course the student will be able to		
course outcomes	CO1 : assess properties implied by the definitions of groups and rings		
	CO2 : analyze and demonstrate examples of subgroups and migs.	nouna and	
	CO2: anaryze and demonstrate examples of subgroups, normal subg	roups and	
	quotient groups.		
	CO3: use the concepts of isomorphism and homomorphism for groups and	rings.	
	CO4: describe Sylow's theorems and their applications.		
	CO5: understand properties of finite fields and Galois theory.		
	Svllabus	No. of	
	•	Lectures	
Unit-1: Group theory	al subgroups Eular's O function quotient groups and homemorphism		
theorems automorphisms	Groups, subgroups, normal subgroups, Euler's Ø- function, quotient groups and nomomorphism 8		
	theorems, automorphisms, cyclic groups and permutation groups, Cayley's theorem.		
Unit-II: Sylow's theorem	18	0	
Class equations, Sylow's	theorems and their applications.	0	
Unit-III: Ring theory			
Rings, ideals, prime and n	naximal ideals, quotient rings, fundamental theorem of arithmetic, unique		
factorization domain, prin	cipal ideal domain, Euclidean domain, polynomial rings and irreducibility	10	
criteria			
Unit-IV. Field theory			
Finite and algebraic exten	sions, existence and cardinality of algebraic closure, finite fields.	8	
Unit-V: Galois theory			
Chinese remainder theore	m, Galois theory of polynomial in characteristic zero and simple examples.	8	
	Total No. of Lectures	42	
Text Books	1 Gallian I. A. Contemporary Abstract Algebra Narosa 4 th Ed. 1999		
	 Gaman J. A., Contemporary Abstract Algebra, Natosa, 4 Ed., 1999. Horstein J. N. Tonios in Algebra, John Wiley, 1005. 		
References Books	1. Artin M., <i>Algebra</i> , Prentice Hall Inc., 1994.		
	2. Sharma R. K., Algebra-I: A Basic Course in Abstract Algebra, Pearson Educa	tion India,	
	2011.		
	3. Fraleigh J. B., A First Course in Abstract Algebra, Pearson, 7 th Ed., 2003.		

Course Title	Numerical Analysis		
Course Code	MA619		
Credits	4		
Course Category	CC		
Year / Semester	I / II		
Prerequisite Courses	Some exposure to linear algebra and calculus.		
L T P	3 0 2		
Course Objectives	To develop the understanding of errors in computations, several mo interpolation, methods to solve an algebraic and transcendental equation and iterative methods to solve a system of linear equations, different re- solve ODE and methods to find numerical derivative and integration of a	ethods for ons, direct nethods to function.	
	After studying this course the student will be able to		
	CO1 : analyze the error incumbent in any such numerical approximation.		
	CO2: compare the viability of different approaches to the numerical s	solution of	
	problems arising in roots of solution of non-linear equations.		
Course Outcomes	CO3: describe the interpolation and approximation numerical different	iation and	
	integration solution of linear systems	ination and	
	CO4: solve linear and poplinger systems of equations numerically		
	CO5 : solve initial and houndary value problems numerically		
	cos. solve mittai and boundary value problems numericany.	No of	
	Syllabus	Lectures	
Unit-I: Solution of equa	tions		
Computer arithmetic, erro	rs, numerical solution of algebraic and transcendental equations,	8	
bisection, secant method, Newton- Raphson method, rate of convergence.			
Unit-II: Direct methods	for solving linear system of equation		
Norms of vectors and m	atrices, solution of systems of linear equations: direct methods (Gauss	8	
elimination, LU decompo	sition), iterative methods (Jacobi and Gauss-Seidel), ill conditioning and	0	
convergence analysis.	convergence analysis.		
Unit-III: Interpolation			
Error of polynomial in	nterpolation, Lagrange, Hermite and spline interpolations, Newton	8	
interpolations, Chebyshev	approximation, power method to find the eigenvalues.		
Unit-IV: Numerical diff	erentiation and numerical integration	o	
Numerical differentiation	based on interpolation, Trapezoidal and Simpson rules.	0	
Unit-V: Numerical solut	tion of differential equations		
Numerical solutions of C	DE's using Picard, Euler, modified Euler and Runge-Kutta methods,		
single step and multi-step	o methods, order, consistency, stability and convergence analysis, stiff	10	
equations, two point boun	dary value problems: shooting and finite difference methods.		
- 1	Total No. of Lectures	42	
	1. Kincaid D. and Cheney W., Numerical Analysis and Mathematics of	f Scientific	
	<i>Computing</i> , Brooks/Cole, 1999.) ~~~~	
Text Books	2. Jain M. K., Iyengar S. R. K. and Jain R. K., Numerical Methods for Scier	ntific and	
	Engineering Computation, New age International Publishers, 2012.	v	
	1. Butcher J. C., The Numerical Analysis of Ordinary Differential Equa	tions, John	
	Wiley, 1987.		
	2. Schwarz H. R., Numerical Analysis: A Comprehensive Introduction, Wil	ley, 1 st Ed.,	
References Books	1989.		
	3. Sharma R. K., Complex Numbers and the Theory of Equations, Anthem	Press India,	
	2012.		
** Laboratory Work:			
Laboratory experiment	ts will be set in consonance with the materials covered in theory.		

Course Title	Topology	
Course Code	MA626	
Credits	4	
Course Category	CC	
Year / Semester	I/II	
Prerequisite Courses	Exposure to set theory and metric spaces.	
LTP	3 1 0	
Course Objectives	To introduce the basic definitions and standard examples of topologic define and illustrate a variety of topological properties such as like con connectedness and separation axioms.	al spaces, npactness,
Course Outcomes	After studying this course the student will be able to	
	CO1: define and illustrate the concept of topological spaces and o	continuous
	functions.	
	CO2: define and illustrate the concept of product topology and quotient top	ology.
	CO3: prove a selection of theorems concerning topological spaces, of	continuous
	functions, product topologies, and quotient topologies.	
	CO4: define connectedness and compactness, and prove a selection	of related
	theorems.	
	CO5: describe different examples distinguishing general, geometric, and	lalgebraic
	topology.	
Syllabus No. of		
		Lectures
Topological spaces, basis	for a topology, order topology, subspace topology.	8
Unit-II: Topological space	ces and continuous functions	
Closed sets, countability	axioms, limit points, continuous functions, product topology, metric	8
topology, quotient topolog	gy.	
Unit-III: Connectedness		
Connected spaces, connect	ted sets in R. components and path components.	8
Unit-IV. Compactness	······································	
Compact spaces compa	otness in metric spaces local compactness convergence of nets in	8
topological spaces	euless in metrie spaces, local compactness, convergence of nets in	0
Upit V. Countability on	d concretion original	
Countability and separatic	u separation axioms on axioms, normal spaces, Urysohn'slemma, Urysohn metrization theorem	10
Countaonity and separatic	Total No. of Loctures	12
Tavt Books	1 Munkres I R Topology Prentice Hall NI 2000	42
Text DUURS	 Numbers J. R., Popology, Plentee Han, NJ, 2000. Simmons G. F. Introduction to Topology and Modern Analysis. International 	Student
	Edition, 1963.	Student
References Books	1. Joshi K. D., Introduction to General Topology. New Age International. New	Delhi,
	2000.	
	2. Deshpande J. V., <i>Introduction to Topology</i> , Tata McGraw-Hill, 1988.	
	$\mathbf{r} = \mathbf{r}$	

Course Title	Partial Differentials Equations	
Course Code	MA627	
Credits	4	
Course Category	CC	
Year / Semester	I / II	
Prerequisite Courses	Exposure to multivariable calculus and ordinary differential equations.	
L T P	3 1 0	
Course Objectives	The main aim of this course is to understand various analytical methods to	find exact
	solution partial differential equations and their implementation to solve	e real life
	problems.	
Course Outcomes	After studying this course the student will be able to	
	CO1: solve the first-order linear and non-linear PDE's by using Lagra	inge's and
	Charpit's methods respectively.	
	CO2: determine the solutions of linear PDE's of second and higher of	order with
	constant coefficients.	c · 1 1
	wethod	of variable
	CO4 . competent in solving linear PDEs using classical solution methods	
	CO5 : solve DDEs in ordinatical and spherical accordinates	
	COS: solve FDEs in cylindrical and spherical coordinates.	NT C
	Syllabus	NO. OI Locturos
Unit-I: First order PDE		Lectures
Basic definitions Origin	of PDFs Classification Geometrical interpretation. The Cauchy problem	
the method of character	istics for Sami linear quasi linear and Non linear equations complete	8
integrala	istics for Semi mear, quasi mear and Non-mear equations, complete	
integrals.		
Unit-II: Second order PDE		
Definitions of Linear and	1 Non-Linear equations, Linear Superposition principle, Classification of	
second-order linear partial differential equations into hyperbolic, parabolic and elliptic PDEs, 10		10
Reduction to canonical forms, solution of linear Homogeneous and non-homogeneous with constant		
coefficients, Variable coefficients, Monge's method.		
Unit-III: Wave equation		
Solution by the method of	of separation of variables and integral transforms, Cauchy problem, Wave	8
equation in cylindrical and	d spherical polar co-ordinates.	
Unit-IV: Laplace and Di	ffusion Equations	
Solution by the method	of separation of variables and transforms. Dirichlet's, Neumann's and	
Churchills problems Diri	chlet's problem for a rectangle half plane and circle Solution of Laplace	8
equation in cylindrical and	d spherical polar coordinates	
Unit-V. Transform Meth	ad	
Fundamental solution by	the method of variables and integral transforms. Duhamal's principle	0
Calation of the exection in calindrical and enhanced unlanced understanding to		
Solution of the equation in		42
Toyt Books	LOTAL NO. OI LECTURES	4 2
Text Dooks	 SNEDDON N., Elements of TDE's, Mediaw Thir Book company Inc., 20 DEBNATH L, Nonlinear PDE's for Scientists and Engineers, Birkhause 2007. 	er, Boston,
References Books	1. Treves F., Basic linear partial differential equations, Academic Press, 1973	5.
	2. Smith M.G., Introduction to the theory of partial differential equa	tions, Van
	Nostrand, 1967.	
	3. Kao Shankar, Partial Differential Equations, PHI, 2006.	

Course Title	Orthogonal Polynomials & Special Functions		
Course Code	MA646		
Credits	4		
Course Category	DSE		
Year / Semester	I/II		
Prerequisite Courses			
LTP	3 1 0		
Course Objectives	The aim of the course is to (i) investigate and derive the properties	of special	
	functions, (ii) know the inter-relations between such functions	and their	
	representations in various forms, (iii) learn certain specific systems of e	orthogonal	
	polynomials and their properties, and (iv) to obtain the generating functi	ons of the	
	polynomials.		
Course Outcomes	After studying this course the student will be able to		
	CO1: solve, expand and interpret solutions of many types of important of	differential	
	equations by making use of special functions and orthogonal polynomials.		
	CO2: derive the formulas and results of certain classical special fund	ctions and	
	orthogonal polynomials by different methods.		
	CO3 : derive the generating relations involving special functions.		
	CO4 : achieve the knowledge to analyses the problems using the methods	of special	
	runctions and orthogonal polynomials.	other eroog	
	cos: describe the role of special functions and orthogonal polynomials in o	other areas	
	of mathematics.	No. of	
	Syllabus	Lectures	
UNIT I: Gamma, Hyper	geometric, and Bessel Functions		
Introduction; Gamma	Function; Hypergeometric Functions: Definition and special cases,		
convergence, analyticity,	, integral representation, differentiation, transformations and summation		
theorems: Bessel Functions: Definition, connection with hypergeometric function, differential and 10		10	
pure recurrence relation	s generating function integral representation. Neumann polynomials		
Neumann series and relate	ed results: Examples on above tonics		
UNIT II. Logondro and	Noumonn Bolynomiols		
Legendre polynomials:	(i) Generating function (ii) Special values (iii) Pure and differential		
regenure polynomials.	Differential equation (ii) Special values (iii) Fute and differential	0	
Leteral relations (IV)	Differential equation (V) Series definition (VI) Rodrigues formula (VI)	8	
Integral representation; I	Neumann polynomials, Neumann series and related results; Examples on		
above topics.			
Unit-III Hermite and L	aguerre Polynomials		
Hermite polynomials: Re	esults (i) to (vii) and expansion of x^n in terms of Hermite polynomials;	8	
Laguerre polynomials: Re	Laguerre polynomials: Results (i) to (vii); Examples on above topics.		
UNIT III: Orthogonal P	olynomials		
Simple sets of polynomia	als; Orthogonal polynomials: Equivalent condition for orthogonality; Zeros		
of orthogonal polynomial	ls; Expansion of polynomials; Three-term recurrence relation; Christoffel-		
Darboux formula; Norma	Darboux formula; Normalization and Bessel's inequality: Orthogonality of Legendre. Hermite and		
Laguerre polynomials: Ordinary and singular points of differential equations. Regular and irregular			
singular points of hyperg	peometric Bessel Legendre Hermite and Laguerre differential equations:		
Examples on above topics			
Unit-V: Congrating Functions			
Concrating functions of some standard forms including Doos and Dust time Sister Coline's			
techniques for finite	some standard forms including boas and buck type. Sister Cellne's	8	
techniques for finding	pure recurrence relation. Unaracterization: Appell, Sheffes and s-type		
characterization of polyno	omial sets.		
	Total No. of Lectures	42	

Text Books	1.	Rainville E. D., Special Functions, Chelsea Publishing Co., Bronx, New York,	
		Reprint, 1971.	
	2.	Marcellan F. and Assche W. Van, Orthogonal Polynomials and Special Functions:	
		Computation and Applications, Lecture Notes in Mathematics, Springer, 2006.	
References Books	1.	Szego G., Orthogonal Polynomials, Memoirs of AMS, 1939.	
	2.	Ismail M.E.H., Classical and Quantum Orthogonal Polynomials in One Variable,	
		Cambridge University Press, 2005.	
	3.	Chihara T.S., An Introduction to Orthogonal Polynomials, Dover Publications, 2011.	
	4.	McBride E. B., Obtaining Generating Functions, Springer Verlag, Berlin	
		Heidelberg, 1971.	

Course Title	Fuzzy Sets and Applications		
Course Code	MA647		
Credits	4		
Course Category	DSE		
Year / Semester	I/II		
Prerequisite Courses	Preliminary knowledge of Set Theory		
LTP	3 1 0		
Course Objectives	The objective of this course is to teach the students the need of fuzzy sets, operations on fuzzy sets, fuzzy relations, possibility theory, fuzzy logi applications.	arithmetic c, and its	
Course Outcomes	After studying this course the student will be able to		
	 CO1: construct the appropriate fuzzy numbers corresponding to uncertain and imprecise collected data. CO2: handle the problems having uncertain and imprecise data. CO3: find the optimal solution of mathematical programming problems having uncertain and imprecise data. CO4: know the concepts of fuzzy graph, fuzzy relation, fuzzy morphism and fuzzy 		
	CO5: deal with the fuzzy logic problems in real world problems.		
	Syllabus No. of		
Unit-I: Fuzzy Sets			
Overview of classical sets, Membership function, A-cuts, Properties of a-cuts, Extension principle. 8			
Compliment, Intersections, Unions, Combinations of operations, Aggregation operations.			
Unit-II: Fuzzy Arithmetic			
Fuzzy numbers, Linguistic variables, Arithmetic operations on intervals and numbers, Fuzzy 8			
Unit III. Eugen Deletions			
Crisp and fuzzy relations, Projections and cylindric extensions, Binary fuzzy relations, Binary relations on single set, Equivalence, Compatibility and ordering Relations, Morphisms, Fuzzy relation equations.			
Unit IV: Possibility Theo	ory & Fuzzy Logic		
Fuzzy measures, Evidence	e and possibility theory, Possibility versus probability theory.	8	
Classical logic, Multivalued logics, Fuzzy propositions, Fuzzy qualifiers, Linguistic hedges.			
Unit-V: Applications of I	Fuzzy Logic	0	
Washing machines, Contr	ol systems engineering, Power engineering and Optimization.	8	
	Total No. of Lectures	42	
Text Books	1. Klir G. J. and Folger T.A., <i>Fuzzy Sets, Uncertainty and Information</i> , 1 st Ed	lition	
	 edition, Prentice Hall Inc., 1988. 2. Klir G.J. and Yuan B., <i>Fuzzy Sets and Fuzzy logic: Theory and Applications</i>, PHI, 1997 		
References Books	1. Zimmermann H.J., <i>Fuzzy Set Theory and its Applications</i> , 4 th Edition, Alli	ed	
	Publishers, 2001.		
	<i>2.</i> J. Yen and R. Langari, <i>Fuzzy Logic: Intelligence, Control, and Information</i> Education, 2003.	<i>n</i> , Pearson	

Course Title	Statistical Informaci		
Course Inte	Statistical Inference		
Course Code	MA048		
Creuits Course Cotogory	4 DSE		
Voor / Somostor			
Proroquisite Courses	Exposure to basic concepts of statistics and probability		
L T P	3 1 0		
Course Objectives	The course aims to shape the attitudes of learners regarding the field of	statistics.	
course objectives	Specifically, the course aim to motivate students in an intrinsic interest in	statistical	
	thinking and instill the belief that statistics is important for scientific research	ch.	
Course Outcomes	After studying this course the student will be able to		
	CO1 : describe the error and its significance in different types of sampling.		
	CO2: construct point and interval estimators; evaluate their goodness (bias	, variance,	
	mean squared error).		
	CO3: understand the concept of the sampling distribution of a statist	ic. and in	
	particular describe the behavior of the sample mean.	.,	
	CO4: demonstrate understanding the estimation of mean and variance and	respective	
	one-sample and two-sample hypothesis tests.		
	CO5: explain the large sample properties of sample mean.		
	Syllabus	No. of	
Unit I. Distributions	•	Lectures	
The concert of cours	distribution standard sman and its significance complian distribution of	0	
The concept of sampling	distribution, standard error and its significance, sampling distribution of	8	
Chi Square, t and F with o	erivations, properties of these distributions and their inter relations.		
Unit-II: Estimation			
Problem of estimation;	point estimation, interval estimation, criteria for a good estimator,	8	
unbiasedness, consistency	unbiasedness, consistency, efficiency and sufficiency with examples.		
Unit-III: Moments			
Method of moments and	d maximum likelihood and application of these method for obtaining	8	
estimates of parameters	of binomial, Poisson and normal distributions, properties of M.L.E's	0	
(without proof), merits and	d demerits of these methods.		
Unit-III : Testing of Hyp	oothesis		
Statistical hypothesis, Nu	ll and alternative hypothesis, simple and composite hypothesis, two types	o	
of error, critical region, p	power of test, level of significance. Best Critical Region, NP Lemma, its	0	
applications to find most p	powerful in case of binomial. Poisson and normal distributions.		
Unit IV : Test of signific	ance		
Small sample tests based	on t, F and Chi-square distribution and test based on normal distribution,		
confidence interval for	single mean, difference of means and variance (only for normal	10	
case)confidence interval f	for single mean, difference of means and variance (only for normal case).	10	
Test of significance for	large samples for attributes and variable, proportions and means, single		
sample, two samples (both paired and independent).			
	Total No. of Lectures	42	
Text Books	1. Kale, B.K.: A First Course on Parametric Inference, Narosa Publishing H	ouse,	
	1999.		
	2. Rohatgi, V.K.: An Introduction to Probability and Mathematical Statistics	, Wiley	
	Eastern, New Delhi, 1988.		
	3. Lehmann, E.L.: Theory of Point Estimation, Student Edition, 1986.		
References Books	1. Lehmann, E.L.: <i>Testing Statistical Hypotheses</i> , Student Editions, 1986.		
	2. Rao, C.R.: Linear Statistical Inference and its Applications, Wiley Eastern	n, 1973.	
	3. Zacks, S.: <i>Theory of Statistical Inference</i> , Wiley, New York, 1971.		

Course Title	Integral Equation and Calculus of Variations	
Course Code	MA649	
Credits	4	
Course Category	DSE	
Year / Semester		
rerequisite Courses	2 1 0	
L I F Course Objectives	The main goal of this course is to introduce to students the fundamenta	al concents
Course Objectives	and some standard results of the integral equations, the methods of solving	ng Integral
	Equations, the problems of the calculus of variations and its many me	thods and
	techniques without using deep knowledge of functional analysis.	
Course Outcomes	After studying this course the student will be able to	
	CO1. to recognize difference between Volterra and Fredholm Integral	Equations,
	First kind and Second kind, homogeneous and inhomogeneous etc.	•
	CO2 . to apply different methods to solve Integral Equations and fully t	understand
	the properties of geometrical problems.	
	CO3 . to understand the fundamental concepts of the space of admissible	variations.
	CO4 , to understand weak and a strong relative minimum of an integral.	
	CO5 . to exposed to the variational problems with moving boundaries.	
		No. of
	Syllabus	Lectures
Unit-I: Preliminary Con	cepts	
Definition and classification	on of linear integral equations. Conversion of initial and boundary value	0
problems into integral e	quations. Conversion of integral equations into differential equations.	8
Integro-differential equati	ions.	
Unit-II: Fredholm Integral Equations		
Solution of integral equa	tions with separable kernels, Eigenvalues and Eigen functions. Solution	
by the successive appro	ximations, and resolvent kernel. Solution of integral equations with	8
symmetric kernels. Hilbert-Schmidt theorem Green's function approach		
Unit-III: Fredholm Clas	sical Theory	
Fredholm method of solut	tion and Fredholm theorems.	8
Unit-IV: Volterra Integ	ral Equations	
Successive approximation	ns Neumann series and resolvent kernel Equations with convolution	8
type kernels Singular int	equations Hilbert-transform Cauchy type integral equations	0
Unit-V: Calculus of Var	intions	
Basic concepts of the ca	lations	
spaces the breehisteebree	a problem Necessary condition for an extremum Euler's equation with	
the appear of one verich	a and assured variables. Variational derivatives. Invariance, of Euler's	10
the cases of one variable	te and several variables, variational derivative. Invariance of Euler's	10
equations. variational pro		
Functionals dependent on	one or two functions, Derivation of basic formula, Variational problems	
with moving boundaries,	Broken extremals: Weierstrass –Erdmann conditions.	
	Total No. of Lectures	42
Text Books	1. Jerry, A. J., Introduction to Integral Equations with Application Publishers (2nd Edition) 1999	ons, whey
	2. Kanwal R. P., <i>Linear Integral Equations</i> , Birkhäuser Bosten, (2nd Editi	ion), 1997.
	3. Weinstock R., Calculus of Variations with Applications to P.	hysics and
	Engineering, Dover Publications, 1974.	
References Books	1. Chambers, L. G., <i>Integral Equations: A Short Course</i> , International Tex	t Book
	2. Gelfand, I. M., Fomin, S. V., <i>Calculus of Variations</i> . Dover Books. 200)0.

Course Title	Introduction to Python Programming	
Course Code	MA628	
Credits	2	
Course Category	SEC	
Year / Semester	I / II	
Prerequisite Courses		
L T P	0 0 4	
Course Objectives	The objective of the course is to provide skills for writing PYTHON pro-	ograms, to
	create simple programming scripts and functions, and to solve basic and	advanced
	numerical and symbolic mathematics problems, and to visualize and presen	t data.
Course Outcomes	After studying this course the student will be able to	
	CO1 : translate mathematical methods to PYTHON code.	
	CO2: use in-built functions to complete the different types of task	
	CO3: use python software to solve mathematical problems.	
	CO4: create and control simple plot and user-interface graphics objects in I	Python.
	CO5: use Python effectively to analyze and visualize data.	
	Syllabus	No. of
	· 	Lectures
Unit-1: Basics of Python	Programming	
Brief Introduction, Insta	llation of PYTHON, Use of PYTHON, Key features, Introduction to	4
PYTHON Software and different editors, Data files and Data types: Character and string, Arrays and		4
vectors, Column vectors, Row vectors.		
Unit-II: Functions		
Assigning value to variab	les, input functions, Eval functions, formatting number and strings, python	4
inbuilt functions.		
Unit-III: Operators, Exp	pressions & Control Flow	
Arithmetic operators; unary operators, binary operators, Bitwise operator, Compound assignment		
operator.		4
Decision statements, Loop control, Functions, Strings, Lists, List processing; searching & sorting		
Unit-IV: Python Packages		
Introduction to Scientific	Python and Numpy Program for Arithmetic operations on functions and	
aquations Eastorizing and	Expanding Expressions Substituting Values Solving Equations program	6
for Matrix operations on	d Trigonomotric functions, substituting values, solve methometrical problems by	0
for Matrix operations, an	a frigonometric functions, programs to solve mathematical problems by	
user defined functions, Programs for Symbolic Math.		
Unit-V: Plotting with Python		4
Introduction to matplotlib, Plotting and Graphics.		22
Toxt Dooks	1 Saha Amit Daing Math with Python William Pollock (2015)	22
I CAL DUUKS	1. Sana Anni, Doing Main Win 1 ymon. Winiani Fonock (2015).	
References Books	1. Hall Tim and Stacey J. P. Python 3 for Absolute Beginners. (2009).	

Course Title	Fluid Dynamics		
Course Code	MA706		
Credits	4		
Course Category	CC		
Year / Semester	II / III		
Prerequisite Courses	Nil		
LTP	3 1 0		
Course Objectives	The objective is to provide the student with knowledge of the fundamenta	als of fluid	
	dynamics and an appreciation of their application to real world problems.		
Course Outcomes	After studying this course the student will be able to		
	CO1: understand the basic principles of fluid mechanics, such as Lagra	ingian and	
	Eulerian approach, conservation of mass etc.		
	CO2: use Euler and Bernoulli's equations and the conservation of mass to	determine	
	velocity and acceleration for incompressible and inviscid fluid.	c	
	CO3: understand the concept of rotational and irrotational flow, stream	functions,	
	velocity potential, sink, source, vortex etc.	wy through	
	co4. analyze simple fluid flow problems (now between parallel plates, no	w unough	
	CO5: understand the phenomenon of flow separation and boundary layer t	heory	
	Syllabus	No. of	
		Lectures	
Unit-I: Introduction to f	luid flows		
Real and ideal fluids, ve	locity, acceleration, streamlines, pathlines, steady and unsteady flows,		
velocity potential, vortic	ity vector, local and particle rates of change, equation of continuity,	8	
conditions at a rigid bound	darv.		
Unit-II: Conservation laws			
Pressure at a point in a	fluid boundary conditions of two inviscid immiscible fluids Euler's		
equations of motion B	ernoulli's equation some notential theorems flows involving axial	8	
symmetry			
Unit-III: Analysis and cl	assification of fluid motion		
Two dimensional flows	use of exploration of fund motion		
for two dimensional flows, t	a impositional incompressible flow, complex notantial for standard two	0	
tor two-dimensional now	s, inotational, incomplessible flow, complex potential for standard two-	8	
dimensional flows, two c	limensional image systems, Milne-thomson circle theorem, theorem of		
Blasius, mathematical for	mulation and solution procedures.		
Unit-IV: Dynamic simila	arity		
Dimensional analysis, Bu	uckingham's pi theorem, dynamic similarity, vorticity diffusion, steady	8	
flow between parallel pla	ates, steady flow in a circular pipe, steady flow between two co-axial	0	
cylinders.			
Unit-V: Flow instability			
Navier-Stokes equations	of motion and some exact solutions, Flows at small Reynolds numbers,	10	
boundary layer theory, I	boundary layer theory, Method of normal modes, Benard problem, double-diffusive instability,		
Taylor problem, Kelvin-H	lelmholtz instability, instability of continuously stratified parallel flows.		
	Total No. of Lectures	42	
Text Books	1. Chorlton F., Textbook of Fluid Dynamics, CBS Publishers, 1998.		
	2. Kundu P. K. and Cohen I. M., Fluid Mechanics, Academic Press London, 20	02.	
References Books	1. Batechelor G. K., An Introduction to Fluid Dynamics, Cambridge Press, 2 nd I	Ed., 2000.	
	2. White F. M., <i>Fluid Mechanics</i> , McGraw Hill, New York, 8 th Ed., 2015.		
	3. Drazin P. G. and Reid W. H., <i>Hydrodynamic Stability</i> , Cambridge Press, 2 nd	Ed., 2004.	

Course Title	Functional Analysis		
Course Code	MA707		
Credits	<u>4</u>		
Course Category	CC C		
Vear / Semester			
Prerequisite Courses	Exposure to real analysis topology and linear algebra		
L T P	3 1 0		
Course Objectives	To introduce the definitions and illustrations of several normed spa	ces. linear	
	operators and derive their properties, and elaborate on basic theorems like	e open and	
	closed mapping theorem, Hahn-Banach theorem and uniform bo	undedness	
	theorem.		
Course Outcomes	After studying this course the student will be able to		
	CO1 : understand the normed linear spaces, Banach space and Dual space	es.	
	CO2: understand inner product spaces, orthogonality and Hillbert spaces.		
	CO3 : distinguish between finite and infinite dimensional spaces.		
	CO4 apply linear operators in the formulation of differential an	d integral	
	equations	a mograi	
		No. of	
	Syllabus	Lectures	
Unit-I: Algebraic systen	18		
Linear spaces and dimer	Linear spaces and dimension of spaces linear transformations and linear operators algebras		
normed linear spaces definition of Banach spaces with examples		10	
normed mieur spaces, act			
Unit-II: Banach spaces			
Continuous linear transfo	rmations, The Hahn-Banach theorem, natural imbedding of a space into	10	
its second conjugate sp	ace, open mapping theorem, closed graph theorem, conjugate of an	12	
operator, Banach Steinhau	us's uniform boundedness theorem.		
Unit-III: Hilbert spaces			
Inner product spaces de	finition and properties. Schwarz inequality and theorems, orthogonal		
complements orthonorm	al sets Bessel's inequality complete orthonormal sets conjugate space	12	
	ar sets, bessers mequanty, complete orthonormal sets, conjugate space		
	T11 /	 	
Unit-IV: Operators on I	indert spaces	8	
Adjoint of an operator, se	If-adjoint operators, normal and unitary operators, projections.		
	Total No. of Lectures	42	
Text Books	1. Simmons G. F., Introduction to Topology and Modern Analysis, Tata Mc Hill International Ed 2004, Fourteenth reprint 2010	Graw-	
	2 Nair M T Functional Analysis: A First Course PHI-I earning (Former)	v. Prentice-	
	Hall of India), New Delhi, 2002.	J. I Tentice-	
References Books	1. Kreyszig E., Introductory Function Analysis with Applications, John Wile	y and Sons,	
	2010.		
	2. Rudin W., Functional Analysis, TMH Edition, 2006.		
	3. Limaye B. V., <i>Functional Analysis</i> , New Age International, 2 nd Ed., 1996.		

Course Title	Operation Research	
Course Code	MA708	
Credits	4	
Course Category	CC	
Year / Semester	II / III	
Prerequisite Courses	NIL	
L T P	3 1 0	
Course Objectives	The course aims to introduce students to use quantitative methods and tech effective decisions-making; model formulation and applications that ar solving business decision problems.	niques for re used in
Course Outcomes	After studying this course the student will be able to	
	 CO1: formulate some real life problems into Linear programming problem. CO2: use the simplex method to find an optimal vector for the stand programming problem and the corresponding dual problem. CO3: prove the optimality condition for feasible vectors for Linear proproblem and Dual Linear programming problem. CO4: find optimal solution of transportation problem and assignment problem. CO5: describe the steady-state solutions of Markovian queuing models. 	lard linear gramming em
	Syllabus	No. of Lectures
Unit-I: Basics of LPP		
Different types of OR models, convex sets, graphical method, infeasible and unbounded LPP's,		8
simplex method, big-M method, two phase method, revised simplex method.		
Unit-II: Duality theory		
Dual simplex method, sen	sitivity analysis, parametric linear programming.	8
Unit-III: Transportation	n problems	0
Transportation problems and assignment problems.		8
Unit-IV: Integer programming		
Cutting plane and branch and bound techniques for all integer and mixed integer programming problems.		8
Unit-V: Game theory		
Graphical method and lin	Graphical method and linear programming method for rectangular games, saddle point, notion of	
dominance, queuing theor	ry, steady-state solutions of Markovian queuing models: M/M/1, M/M/1	10
with limited waiting space	M/M/C, $M/M/C$ with limited space, $M/G/1$, inventory models.	
	Total No. of Lectures	42
Text Books	1. Taha H. A., Operations Research: An Introduction, MacMillan Pub Co., N	VY, 9 th Ed.,
	 2013. Ravindran A., D. T. Phillips and J. J. Solberg, <i>Operations Research: Principles and Practice</i>, John Wiley and Sons, NY, 2nd Ed., 2012. 	
References Books	1. Bronson R. and Naadimuthu G., Schaum's Outline of Operations Research, N	IcGraw-
	Hill Education, 1981.	-th
	2. Hillier F. S. and Liberman G. J., Introduction to Operation Research, McGraw	v-Hill, 7 ^m
	Ed., 2001.	

Course Title	Differentiable Manifold	
Course Code	MA709	
Credits	4	
Course Category	CC	
Year / Semester	II / III	
Prerequisite Courses	Calculus/real analysis of functions of one and several variables up to and	l including
-	the implicit and inverse function theorem and linear algebra.	C C
<u>Г</u> Т Р	3 1 0	
Course Objectives	The primary objective of this course is to provide basic knowledge of	manifolds.
	submanifolds and geometry of manifolds.	,
Course Outcomes	After studying this course the student will be able to	
course outcomes	CO1 : understand about differentiation of functions of several variables, tange	
	vector and vector field	is, tangent
	CO2 : understand the differential forms and Connections	
	CO3: describe the covectors, covariant and contravariant tensors	
	CO4: understand the torsion and curvature of a connection structure of	quotion of
	Cortan Bianahi's identities	quation of
	Contail, Diancial's identifies.	aaroniant
	COS: understand the arme connection, parallelism, Geodesic	covariant
	differentiation of tensors.	
	Syllabus	NO. OI L octuros
UNIT I: Calculus of Rn		Lectures
Differentiable functions	from $\mathbb{R}n \to \mathbb{R}m$ Chain rule Directional derivatives Differential of a	8
man Chain rule for differ	entials Inverse manning theorem Implicit function theorem	0
UNIT II: Manifold and	its differentiable structure	
Topological manifolds	Differentiable stlas Smooth mans Diffeomorphism Equivalent atlases	
Differentiable structure of	n a manifold Space of smach many. Tangant visitors and tangant space	12
Differential of a smooth r	n a mannoid, space of smooth maps, rangent vectors and tangent space,	
	nap.	
UNIT III: Submanifolds	s, vector neios and Covectors	
immersion, Embedding a	and Submanifolds, vector fields, Lie algebra of vector fields, filtegraf	10
curve of a vector field, C	lovectors and Cotangent spaces, Pull back of a linear differential form,	12
One parameter group of	transformation, Exponential map, Covariant and Contravariant tensors,	
Laws of transformation fo	or the components of tensors.	
UNIT IV: Differential fo	orms and Connection	
Differential forms, Exter	rior product, Grassman algebra of forms, Exterior derivative, Affine	10
Connection, Parallelism,	Geodesic Covariant differentiation of tensors, Torsion and Curvature of a	10
Connection, Structure equ	ation of Cartan, Bianchi's identities.	
	Total No. of Lectures	42
Text Books	1. Boothby W. M., An Introduction to Differentiable Manifolds and I Geometry, Academic Press, Povised Ed. 2003	Riemannian
	Geometry, Academic 11055, Revised Ed. 2005.	
References Books	1. Matsushima Yozo., <i>Differentiable Manifolds</i> , Blue Collar Schol	lar/Kindle;
	$2^{\mu\alpha}$ Edition, 2019.	
	2. Kumaresan S., A Course in Differential Geometry and Lie groups,	Hindustan
	Book Agency, 2002.	

Course Title	Mathematical Modelling and Simulations	
Course Code	MA746	
Credits	4	
Course Category	DSE	
Year / Semester	II / III	
Prerequisite Courses	Differential equation and optimization theory.	
L T P	3 1 0	
Course Objectives	The goal of the course is to introduce students to the elements of the ma	thematical
	modeling process, the basic rules of logic, including the role of	axioms or
	assumptions, logical arguments, and rigorous proofs and formulation of c	conjectures
	by abstracting general principles from examples.	
Course Outcomes	After studying this course the student will be able to	
	CO1 : translate everyday situations into mathematical statements (mode	els) which
	can be solved/analyzed, validated, and interpreted in context.	
	CO2: identify assumptions which are consistent with the context of the pr	oblem and
	which in turn shape and define the mathematical characterization of the p	roblem.
	CO3: revise and improve mathematical models so that they will better con	respond
	to empirical information and/or will support more realistic assumptions. CO4: assess the validity and accuracy of the approach relative to the	a problem
	requirement	e problem
	CO5: apply tools to mathematically analyze and solve contemporary pro	blems.
		No. of
	Syllabus	Lectures
Unit I: Introduction		
Models, reality, Propertie	s of models, model classification and characterization, steps in building	
mathematical models, sou	rces of errors, dimensional analysis.	8
Modeling using Proportion	onality. Modeling using Geometric similarity: graphs of a functions as	Ū
models		
Unit II: Modeling		
Modeling using Proporti	onality. Modeling using Geometric similarity: graphs of a functions as	
models	sharty, Modering using Geometric similarity, graphs of a functions as	
Fitting models to data gr	applically. Analytic methods of model fitting. Applying the least square	8
Fitting models to data gr	aphicany, Analytic methods of model fitting, Applying the least square	
Criterion,		
High order polynomial m	odels, Cubic Spline models.	
Unit III: Discrete Proba	bilistic & Optimization Modeling	
Probabilistic modeling w	ith discrete system; Modeling components & System Reliability; Linear	
Regression.		8
Linear Programming – G	eometric solutions, Algebraic Solutions, Simplex Method and Sensitivity	
Analysis.		
Unit IV: Modeling with	a Differential Equations	
Population Growth, Gr	aphical solutions of autonomous differential equations, numerical	Q
approximation methods Euler's Method and R.K. Method.		
Predator Prey Model, Epidemic models, Euler's method for systems of Differential equations.		
Unit V : Simulation Modeling		
Discrete-Evnt Simulation, Generating random numbers; simulating probabilistic behavior;		
Simulation of Inventory model and Queuing Models using C program.		10
Other Types of simula	tion-Continuous Simulation, Monte-Carlo simulation. Advantages,	
disadvantages and pitfalls of simulation		
Total No. of Lectures		
Text Books	1. Frank R. Giordano, Mawrice D Weir & William P. Fox, A first	course in
	Mathematical Modeling, 3rd Edition, Thomson Brooks/Cole, Vikas	Publishing
	House (P) Ltd., 2003.	

	 Murray J.D., Mathematical Biology – I, 3rd Edition, Springer Internation Edition, 2004. Kapoor J.N., Mathematical Models in Biology and Medicine, East West Pres New Delhi, 1985.
References Books	 Robert E. Shannon, Systems Simulation: The Art and Science, Prentice Ha U.S.A, 1975. Law Averill M. & Kelton W. David, Simulation Modeling and Analysis, 3 Edition, Tata McGraw Hill, 1999.

Course Title Introduction to Mathematical Finance			
Course Code MA747			
Credits 4			
Course Category DSE			
Year / Semester II / III			
Prerequisite Courses Exposure to multivariable calculus, linear algebra, and probability.			
L T P 3 1 0			
Course Objectives The goal of the course is to provide the students with knowledge of	a range of		
mathematical and computational techniques that are required for a wi	le range of		
quantitative positions in the financial sector and to develop student app	reciation of		
the major issues involved in rigorous advances in the area of financial mat	hematics.		
Course Outcomes After studying this course the student will be able to			
CO1 : understand the mathematical foundations of quantitative finance.			
CO2: understand the standard and advanced quantitative methodo	logies and		
techniques of importance to a range of careers in investment banks	and other		
financial institutions.			
CO3 : appreciation of emerging theory and techniques in the area	of financial		
mathematics.			
CO4 : create and evaluate potential models for the price of shares.			
CO5 : construct, evaluate and analyze models for investments and securiti	s.		
Svllabus	No. of		
	Lectures		
Unit-I: Fundamentals of the financial markets			
Fundamentals of the financial markets, meaning of notions like asset portfolio derivatives (example:	8		
futures, options forwards etc.).			
Unit-II: Asset pricing model			
Binomial asset pricing model under no arbitrage condition single-period model, multi-period			
model Risk-neutral probabilities martingales in the discrete framework risk-neutral valuation of	8		
European and American options under no arbitrage condition in the Binomial framework			
Unit-III: Black-Scholes formula			
Random walk and Brownian motion Geometric Brownian motion Black-Scholes formula			
properties of Black Scholes option cost estimation of sigma pricing American put option and	8		
European call option			
Unit-IV: Portiono management	0		
Risk, risk and expected return on a portiono, capital asset pricing model: capital market line, beta	8		
factor and security market line.			
Unit-V: Arbitrage:	10		
Arbitrage theorem, multi-period binomial model, hedging: delta hedging, Greek parameters,	10		
hedging business risk, value at risk, speculating with derivatives.			
Total No. of Lectures	<u>42</u>		
Text Books 1. Ross S. M., An Introduction to Mathematical Finance, Cambridge Univ	ersity Press,		
2. Capinski M and Zastawniak T., Mathematics for Finance: An Introd	uction to		
Financial Engineering, Springer-Verlag, London, 2003.			
References Books 1.Luenberger D. G., Investment Science, Oxford University Press, NY, 1998.			
2. Hull J. C., Options Futures and Other Derivatives Prentice Hall Inc. I			
Bing th Ed 2000	pper Saddle		
River, 4 th Ed., 2000.	pper Saddle		

Course Title	Statistics through SPSS	
Course Code	MA748	
Credits	4	
Course Category	DSE	
Year / Semester		
Prerequisite Courses	Exposure to statistics.	
L T P		
Course Objectives	To familiar and to develop learning mindsets to analyze statistical data through software and to learn the basic syntax, coding and vocabulary to aid in data	analysis.
Course Outcomes	After studying this course the student will be able to	
	CO1: learn basic workings of SPSS and perform a wide range of data ma	anagement
	tasks in SPSS with the understanding of different types of data and scale measurement.	es of their
	CO2: plot various kinds of chart and graph for analysis of data.	
	CO3: obtain descriptive statistics and basic inferential statistics for co	mnarisons
	using SPSS	mpunsons
	COA: apply basic statistical parametric and non-parametric tasts for the give	on data
	CO5 , apply basic statistical parametric and non-parametric tests for the give	f CDCC
	COS: carry out correlation, regression and factor analysis through the use of	1 SPSS.
	Syllabus	No. of
Unit I. Data		Lectures
Data: Qualitative and quantitative data, Cross-sectional and time series data, Univariate and multivariate data. Scales of measurement of data. SPSS data file: Opening a data file in SPSS, SPSS Data Editor, Creating a data file, Editing and manipulating data, Missing values, Editing SPSS output, Copying SPSS output, Printing from SPSS,		8
Unit-II: Descriptive stati	stics with SPSS	
Massuras of central tendency, Dispersion, Skawness, Kurtosis		8
Unit III: Charts and gra	nby with SBSS	
Unit-111: Unarts and graphs with SPSS		8
Frequencies, Bar charts, P	te charts, Line graphs, Histograms, Box piols.	
Unit – IV: Statistical tests using SPSS		
Normality tests, t-tests, F	-test, One way and Two way ANOVA, Non-parametric tests- Chi Square,	8
Spearman rank, Maan Whitney U and Wilcoxon signed rank test.		
Unit – V: Correlation and regression using SPSS		
Linear correlation and regression, Multiple regression. Factor analysis using SPSS.		10
	Total No. of Lectures	42
Text Books	1. Gupta S.L. and Gupta H., SPSS for Researchers, International Book Hous	e Pvt. Ltd,
	2011.	
	2. Field A., Discovering Statistics using SPSS, SAGE Publications, 4 th Ed. 20	013.
References Books	1. Gupta V., SPSS for Beginners, VJ Books Inc., 1999.	
	2. Rajathi A. and Chandran P., SPSS for you, MJP Publishers, 2010.	

Course Title	Documentation in Latex		
Course Code	MA716		
Credits	2		
Course Category	SEC		
Year / Semester	II / III		
Prerequisite Courses			
L T P	0 0 4		
Course Objectives	Installation and basic handling of the software, teach the basics of LaTeX,	introduce	
	advanced techniques for writing mathematics, introduce advanced techni	niques for	
	editing and formatting documents and preparing large documents such	as use of	
	LaTeX in daily academic and official work.		
Course Outcomes	After studying this course the student will be able to		
	CO1: Execute typesetting of journal articles, technical reports, thesis, b	ooks, and	
	slide presentations.		
	CO2: Control over large documents containing sectioning, cross-reference	ces, tables	
	and figures.	-	
	CO3: Typesetting of complex mathematical formulae.		
	CO4: Advanced typesetting of mathematics with AMS-LaTeX.		
	CO5: Automatic generation of table of contents, bibliographies and indexes	s.	
Syllabus No. of			
		Lectures	
Unit-I: Installation		1	
Installation of LaTex and	editors. Introduction of LaTex and different editors.	т	
Unit-II: Typesetting			
Basic and advanced docur	ment typesetting. Mathematical equation typing and editing. Typesetting of	4	
Journal articles, Technical	l reports, Thesis, Books.		
Unit-III: Tables & Figures			
Inclusion of figures and ta	Inclusion of figures and tables.		
Unit-IV: Bibliography			
Preparation of bibliography.			
Unit-V: Beamer			
Slide preparation using Beamer. 4			
	Total No. of Lectures	20	
Text Books	1. Lamport Laslie, LaTeX: A Document Preparation System, (2nd Edition),	1994 .	
References Books	1. Gratzer George, <i>Practical LaTeX</i> , Springer, 2014.		

Course Title	Measure Theory and Integration	
Course Code	MA717	
Credits	4	
Course Category	CC	
Year / Semester	II / IV	
Prerequisite Courses	Real analysis	
L T P	3 1 0	
Course Objectives	To develop an understanding of the basic concepts of the theory of me	easure and
	integration, the main proof techniques in the field, and apply the theory	abstractly
	and concretely, and use measure theory in Riemann integration and	work with
	Lebesgue measure and to exploit its special properties.	
Course Outcomes	After studying this course the student will be able to	
	CO1: understand how Lebesgue measure on R is defined,	
	CO2: understand basic properties are measurable functions,	
	CO3: understand how measures may be used to construct integrals,	
	CO4 : know the basic convergence theorems for the Lebesgue integral,	
	CO5: understand the relation between differentiation and Lebesgue integrat	tion.
	Syllabus	No. of Lectures
Unit I: Lebesgue Measur	°e	
Lebesgue Outer Measu	re, The s-Algebra of Lebesgue Measurable Sets, Outer and Inner	
Approximation of Lebes	gue Measurable Sets, Countable Additivity, Continuity and the Borel-	8
Cantelli Lemma, Non-mea	asurable Sets.	
Unit-II: Lebesque Funct	ion	
The Cantor Set and the C	anton-Lebesque Function Sums Products and Compositions of Lebesque	
Massurable Functions	quantial Pointwise Limits and Simple Approximation Littlewoods's three	8
principles Egoroff's The	quential Fontwise Limits and Simple Approximation, Entrewoods S three	
principles, Egotoff s The		
Unit III: The Lebesgue I		
The Lebesgue Integral of	a Bounded Measurable Function over a Set of Finite Measure, The	
Lebesgue Integral of a	Measurable Nonnegative Function; The General Lebesgue Integral;	8
Countable Additivity and	Continuity of Integration, Uniform Integrability, Uniform Integrability and	
Tightness, Convergence in	n measure, Characterizations of Riemann and Lebesgue Integrability.	
Unit IV: Differentiation	and Lebesgue Integration	_
Continuity of Monotone	Functions, Differentiation of Monotone Functions, Functions of Bounded	8
Variation, Absolutely Cor	tinuous Functions, Integrating Derivatives.	
Unit IV: The Lp Spaces		
Normed Linear Spaces, The Inequalities of Young, Hölder and Minkowski, The L ^p spaces,		4.0
Approximation and Separability. The Riesz Representation for the Dual of L^p . Weak Sequential 10		10
Convergence in L ^p , Weak Sequential Compactness, The Minimization of Convex Functionals.		
Total No. of Lectures		42
Text Books	1. Royden I. H.L. and Fitzpatrick P.M., <i>Real Analysis</i> , 4 th Ed. New Jersev: F	earson
	Education Inc., 2013.	
References Books	1. Halmos P. R., <i>Measure Theory</i> . Springer, 2014	
Letter ences Doons	2. Munroe M.E., <i>Introduction to measure and integration</i> . Addison Wesley.	1959.
	3. Barra G. de, <i>Measure theory and integration</i> . New Age, 1981.	
	4. Jain P.K. and Gupta V.P., Lebesgue measure and integration. New Age. 1	986.
	i , G	

Course Title	Classical Mechanics	
Course Code	MA718	
Credits	4	
Course Category	CC	
Year / Semester	II / IV	
Prerequisite Courses	Exposure to Newton's laws and basic physics concepts.	
L T P	3 1 0	
Course Objectives	To develop the understanding of moments of inertia and its application dynamics of a rigid body rotating about a fixed point, concept of g equations and Lagrange's equations of motion of a rigid body, pri- Hamiltonian, and introduction to Lagrange and Poisson brackets and its app	ons in the eometrical nciples of olications.
Course Outcomes	After studying this course the student will be able to	
	 CO1: study the path described by the particle moving under the infreentral force. CO2: apply the concept of system of particle in finding momendirections of principle axes. CO3: apply Euler's dynamical equations for studying rigid body motion CO4: represent the equation of motion for mechanical systems Lagrangian and Hamiltonian formulations of classical mechanics. CO5: obtain canonical equations using different combinations of guardiant subsequently developing Hamilton Jacobi method equations of motion. 	luence of nt inertia, s. using the generating to solve
	Syllabus	No. of Loctures
Unit I. Moment of Inc	rtio	Lectures
-1; wroment of the		
Moments and products of	inertia, Angular momentum of a rigid body, Principal axes and principal	
moment of inertia of a i	rigid body, Kinetic energy of a rigid body rotating about a fixed point,	8

Momental ellipsoid and equimomental systems, Coplanar mass distributions, General motion of a	
rigid body. (Relevant topics from the book of Chorlton).	
Unit – II: Free & constrained systems	
Constraints and their classification, Holonomic and non-holonomic systems, Degree of freedom and	
generalized coordinates, Virtual displacement and virtual work, Statement of principle of virtual	8
work (PVW), Possible velocity and possible acceleration, Ideal constraints, General equation of	
dynamics for ideal constraints,	
Unit-II: Lagrange equations	
Lagrange equation of the first kind. D' Alembert principle, Independent coordinates and generalized	
forces, Lagrange equations of the second kind, Generalized velocities and accelerations. Uniqueness	8
of solution, Variation of total energy for conservative fields. Lagrange variable and Lagrangian	
function $L(t, Q_i, \dot{q}_i)$, Lagrange equations for potential forces, Generalized momenta pi.	
Unit – III : Hamiltonian equation	
Hamiltonian variable and Hamiltonian function, Donkin theorem, Ignorable coordinates, Hamilton	
canonical equations, Routh variables and Routh function R, Routh equations, Poisson Brackets and	Q
their simple properties, Poisson identity, Jacobi - Poisson theorem. Hamilton action and Hamilton	ð
principle, Poincare – Carton integral invariant, Whittaker equations, Jacobi equations, Lagrangian	

action and the principle of least action. **Unit-V: Canonical Transformation**

Necessary and sufficient condition for a canonical transformation, Univalent Canonical 10 transformation, Free canonical transformation, Hamilton-Jacobi equation, Jacobi theorem, Method of separation of variables in HJ equation, Lagrange brackets, Necessary and sufficient conditions of

canonical character of a tr	ansform	ation in terms of Lagrange brackets, Jacobian matrix of a canonical	
transformation, Condition	s of can	onicity of a transformation in terms of Poison brackets, Invariance	l
of Poisson Brackets under	canonic	al transformation.	1
		Total No. of Lectures	42
Text Books	1.	Gantmacher F., Lectures in Analytic Mechanics, MIR Publishers, Moscow	[,] 1975.
	2.	Panat P.V., Classical Mechanics, Narosa Publishing House, New Delhi, 2	005.
	3.	Rana N.C. and Joag P.S., Classical Mechanics, Tata McGraw-Hill, New	Delhi,
		1991.	
References Books	1.	Louis N. Hand and Janet D. Finch, Analytical Mechanics, CUP, 1998.	
	2.	Sankra Rao K., Classical Mechanics, Prentice Hall of India, 2005.	
	3.	Chorlton F., Textbook of Dynamics, CBS Publishers, New Delhi.	

	Number Theory and Cryptography	
Course Code	MA719	
Credits	4	
Course Category	CC	
Year / Semester		
Prerequisite Courses	Linear algebra and Discrete Mathematics	
LTP	3 1 0	
Course Objectives	The goal of the course is to give a simple account of classical numb	er theory,
	prepare students to graduate-level courses in number theory and algeb	ra, and to
	demonstrate applications of number theory and exposure to cryptography	
Course Outcomes	After studying this course the student will be able to	
	CO1: understand the properties of divisibility and prime numbers, co	mpute the
	greatest common divisor and least common multiples and hand	dle linear
	Diophantine equations.	
	CO2 : understand the operations with congruences, linear and	non-linear
	congruence equations	
	CO3 : understand and use the theorems: Chinese Remainder Theorem,	Lagrange
	theorem, Fermat's theorem.	0 0
	CO4 : understand continue fractions and will be able to approximate	e reals by
	rationales.	5
	CO5 [•] understand the basics of RSA security and be able to break the	e simplest
	instances	e simplest
	insurces.	No. of
	Syllabus	Lectures
Unit 1:		
Prime numbers and div	sibility. Number system, Divisibility and properties. Prime numbers	
factorization. Fundament	al theorem of arithmetic. Euclid's lemma, Division algorithm, Fermat	12
factorization, Fundament	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat	12
factorization, Fundament numbers and application conjecture.	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach	12
factorization, Fundament numbers and application conjecture.	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach	12
factorization, Fundament numbers and application conjecture. Unit 2:	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach	12
factorization, Fundament numbers and application conjecture. Unit 2: Mobius function μ(n) an	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$,	12
 factorization, Fundament numbers and application conjecture. Unit 2: Mobius function μ(n) an Divisor sum formula for 	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or ϕ (n), Relation connecting μ and ϕ , Product formula for ϕ (n),	12
 factorization, Fundament numbers and application conjecture. Unit 2: Mobius function μ(n) an Divisor sum formula for Multiplicative functions. 	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or ϕ (n), Relation connecting μ and ϕ , Product formula for ϕ (n),	12
 factorization, Fundament numbers and application conjecture. Unit 2: Mobius function μ(n) an Divisor sum formula for Multiplicative functions. Unit 3: 	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or $\phi(n)$, Relation connecting μ and ϕ , Product formula for $\phi(n)$,	12
 factorization, Fundament numbers and application conjecture. Unit 2: Mobius function μ(n) an Divisor sum formula for Multiplicative functions. Unit 3: Congruence relation, Bas 	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or ϕ (n), Relation connecting μ and ϕ , Product formula for ϕ (n), ic properties, Congruence and equivalence relation, Simple applications,	12
 factorization, Fundament numbers and application conjecture. Unit 2: Mobius function μ(n) an Divisor sum formula for Multiplicative functions. Unit 3: Congruence relation, Bas Residue classes, Linear construction 	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or ϕ (n), Relation connecting μ and ϕ , Product formula for ϕ (n), ic properties, Congruence and equivalence relation, Simple applications, ongruences, Congruence relation conditions for many solutions, Euler-	12 11 11
 factorization, Fundament numbers and application conjecture. Unit 2: Mobius function μ(n) an Divisor sum formula for Multiplicative functions. Unit 3: Congruence relation, Bas Residue classes, Linear of Fermat theorem, Little Fermat 	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or ϕ (n), Relation connecting μ and ϕ , Product formula for ϕ (n), ic properties, Congruence and equivalence relation, Simple applications, ongruences, Congruence relation conditions for many solutions, Euler- rmat theorem, Chinese reminder theorem.	12
factorization, Fundament numbers and application conjecture. Unit 2: Mobius function $\mu(n)$ an Divisor sum formula for Multiplicative functions. Unit 3: Congruence relation, Bas Residue classes, Linear of Fermat theorem, Little Fe Unit 4:	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or ϕ (n), Relation connecting μ and ϕ , Product formula for ϕ (n), ic properties, Congruence and equivalence relation, Simple applications, ongruences, Congruence relation conditions for many solutions, Euler- rmat theorem, Chinese reminder theorem.	12
 factorization, Fundament numbers and application conjecture. Unit 2: Mobius function μ(n) an Divisor sum formula for Multiplicative functions. Unit 3: Congruence relation, Bas Residue classes, Linear of Fermat theorem, Little Fe Unit 4: Public key encryption, Te 	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or ϕ (n), Relation connecting μ and ϕ , Product formula for ϕ (n), ic properties, Congruence and equivalence relation, Simple applications, ongruences, Congruence relation conditions for many solutions, Euler- rmat theorem, Chinese reminder theorem. RSA encryption and decryption, the equation $x^2 + y^2 = z^2$, Fermat's	12 11 11 8
factorization, Fundament numbers and application conjecture. Unit 2: Mobius function $\mu(n)$ an Divisor sum formula for Multiplicative functions. Unit 3: Congruence relation, Bas Residue classes, Linear of Fermat theorem, Little Fe Unit 4: Public key encryption, T Last theorem.	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or ϕ (n), Relation connecting μ and ϕ , Product formula for ϕ (n), ic properties, Congruence and equivalence relation, Simple applications, ongruences, Congruence relation conditions for many solutions, Euler- rmat theorem, Chinese reminder theorem. RSA encryption and decryption, the equation $x^2 + y^2 = z^2$, Fermat's	12 11 11 8
factorization, Fundament numbers and application conjecture. Unit 2: Mobius function μ(n) an Divisor sum formula for Multiplicative functions. Unit 3: Congruence relation, Bas Residue classes, Linear of Fermat theorem, Little Fe Unit 4: Public key encryption, T Last theorem.	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or ϕ (n), Relation connecting μ and ϕ , Product formula for ϕ (n), ic properties, Congruence and equivalence relation, Simple applications, ongruences, Congruence relation conditions for many solutions, Euler- rmat theorem, Chinese reminder theorem. RSA encryption and decryption, the equation $x^2 + y^2 = z^2$, Fermat's <u>Total No. of Lectures</u>	12 11 11 8 42
factorization, Fundament numbers and application conjecture. Unit 2: Mobius function μ(n) an Divisor sum formula for Multiplicative functions. Unit 3: Congruence relation, Bas Residue classes, Linear of Fermat theorem, Little Fe Unit 4: Public key encryption, T Last theorem. Text Books	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or ϕ (n), Relation connecting μ and ϕ , Product formula for ϕ (n), ic properties, Congruence and equivalence relation, Simple applications, ongruences, Congruence relation conditions for many solutions, Euler- rmat theorem, Chinese reminder theorem. RSA encryption and decryption, the equation $x^2 + y^2 = z^2$, Fermat's Total No. of Lectures 1. David Sankara and Burton M., <i>Elementary Number Theory</i> , 6th McGraw, Hill Indian reprint 2007	12 11 11 8 8 42 Ed., Tata
factorization, Fundament numbers and application conjecture. Unit 2: Mobius function μ(n) an Divisor sum formula fo Multiplicative functions. Unit 3: Congruence relation, Bas Residue classes, Linear of Fermat theorem, Little Fe Unit 4: Public key encryption, 1 Last theorem. Text Books	al theorem of arithmetic, Euclid's lemma, Division algorithm, Fermat as, Linear Diophantine equation, prime counting function, Goldbach d properties, Divisor sum formula for $\mu(n)$, Euler totient function $\phi(n)$, or ϕ (n), Relation connecting μ and ϕ , Product formula for ϕ (n), ic properties, Congruence and equivalence relation, Simple applications, ongruences, Congruence relation conditions for many solutions, Euler- rmat theorem, Chinese reminder theorem. RSA encryption and decryption, the equation $x^2 + y^2 = z^2$, Fermat's <u>Total No. of Lectures</u> 1. David Sankara and Burton M., <i>Elementary Number Theory</i> , 6th McGraw- Hill, Indian reprint, 2007.	12 11 11 8 42 Ed., Tata

Course Title	Dynamical Systems		
Course Code	MA749		
Credits	4		
Course Category	DSE		
Year / Semester	II / IV		
Prerequisite Courses	Fluid Dynamics		
L T P	3 1 0		
Course Objectives	The goal of the course to introduce the students with the concepts of well-	-posedness	
	of differential equations, to familiarize with Bifurcations in 1Dand 2D flo	ws, chaos,	
	and exposure to stability analysis.		
Course Outcomes	After studying this course the student will be able to		
	CO1: understand the Lipschitz condition, well-posedness of differential eq	uation and	
	contraction mapping theorem.		
	CO2: describe the stability and bifurcation.		
	CO3: understand nonlinear autonomous system in 2D flows		
	CO4: apply variable gradient method		
	CO5: understand the choos and attractors		
	cos. understand the chaos and attractors.	N 6	
	Syllabus	NO. OI	
Unit.I: Mathematical pr	eliminaries	Lectures	
Open and closed sets cor	npact set dense set continuity of functions Lipschitz condition smooth		
functions, vector space.	normed linear space, inner product space, well-posedness of ordinary	9	
differential equations, Lip	schitz continuity and contraction mapping theorem.		
	1.0		
Unit-II: One-dimensiona	ll IIOWS	0	
bifuration nitablark bifu	Fixed points and stability, linear stability analysis, saddle- node bifurcation, transcritical 9		
Unit-III. Two-dimension	and flows		
Linear systems nonlinea	r autonomous systems phase portraits fixed points and linearization		
conservative systems in	dex theory limit cycles Poincare Bendixson theorem Bendixson's	10	
criteria Lienard systems	dex meory, mine eyeles, remeare benanson meorem, benanson s		
Unit-IV: Lyapunov stab	ility		
Variable gradient method	LaSalle's invariance property, transcritical and pitchfork bifurcations,	10	
Hopf bifurcation, Poincar	e maps.		
Unit-V: Chaos	^	4	
Introduction to chaos and	attractors.	4	
	Total No. of Lectures	42	
Text Books	1. Strogatz S. H., Nonlinear Dynamics and Chaos, Perseus books publishing, 19	994.	
	2. Ricardo H. J., A Modern Introduction to Differential Equations, Academic	c Press, 2 nd	
	Ed., 2009.		
	5. Knalil H. K., Nonlinear Systems, PHI, 1996.	Carl	
keterences Books	1. wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chao	os, Springer,	
	1990.		
	2. Menss J. D., Differential Dynamical Systems, SIAM, 2007.	Cala di C	
	5. Orimsnaw K., Nonlinear Orainary Differential Equations, Blackwell	Scientific	
	Publications 1990		

Course Title	Stochastic Processes	
Course Code	MA756	
Credits	4	
Course Category	DSE	
Year / Semester	II / IV	
Prerequisite Courses	Probability and Linear algebra.	
LTP	3 1 0	
Course Objectives	The aim of this course is to provide a good understanding of the key c	oncepts of
	stochastic processes.	
Course Outcomes	After studying this course the student will be able to	
	CO1: understand the definition, classification of Stochastic processes ar	nd Markov
	chains.	
	CO2: define the concept of a homogeneous Poisson process, and derive	e the form
	of the distribution of the inter-arrival times.	
	CO3: decide whether a birth-death process has a stationary distribution.	
	CO4: calculate the expected number of renewals in a renewal process.	
	CO5: define the concepts of a reliability function and k-out-of-n standby	system.
		No of
	Syllabus	Lectures
Unit- I		
Stochastic Processes: de	finition, classification and examples. Markov Chains: definition and	8
examples. Transition mat	rix. Order of a Markov chain. Markov chain as graphs.	Ũ
Unit – II		
Higher transition probabilities Classification of states and chains Determination of higher		
transition probabilities	Poisson Process: Introduction Postulates Properties and related	10
distributions	Toisson Trocess. Infoduction, Tostulates, Troperties and Telated	
Unit – III Dave bigth and see Digth	Definition of	
Pure birth process. Birth	and death process: Immigration-emigration process, Definitions and	12
simple examples of rene	ewal process in discrete and continuous time, Regenerative stochastic	
processes, Markov renews	al, and semi-Markov processes.	
Unit – IV		
Reliability, systems with components in series, Systems with parallel components, k-out-of-n		
systems, Non-series para	llel systems, Systems with mixed mode failures. Standby redundancy:	12
Simple standby system, k-out-of-n standby system.		
	Total No. of Lectures	42
Text Books	1. Ross, S. M., "Stochastic Processes" Wiley India Pvt. Ltd., 2nd Ed., 200	8.
	2. Hoel, P.G. and Stone, C.J., "Introduction to Stochastic Processes", Wav	eland
	Press, 1986.	
References Books	1. Medhi J., <i>Stochastic Processes</i> , New Age International Publishers, 2009	₽.
	2. Balagurusami E., Reliability Engineering, Tata McGraw Hill, New Dell	ni, 1984.

Course Title	Numerical Solutions of DDEa	
Course Title	Numerical Solutions of PDEs	
Course Coue	MA758	
Course Cotegory	DSE	
Vaar / Samostar		
Prorequisite Courses		
I T P	3 0 2	
Course Objectives	Introduce the finite difference schemes (FDS), order of accuracy of concept of stability convergence, dissipation and dispersion, and exposed thyperbolic, parabolic and elliptic PDE's.	a scheme, to FDS for
Course Outcomes	After studying this course the student will be able to CO1: apply FDS to solve partial differential equations. CO2: describe the boundary conditions for different schemes. CO3: understand the convergence estimate for parabolic equation, well-p stable stable initial BVP. CO4: solve parabolic and elliptic PDEs with ADI schemes and FDS respect CO5: apply finite difference schemes to solve Poisson's equation.	posed, and tively.
Syllabus		No. of Lectures
Unit-I: Linear stability and convergenceIntroduction to hyperbolic PDE's, finite difference schemes, convergence and consistency, CFLnumber and Fourier and Von Neumann stability analysis for FDS.		
Unit-II: Dissipation and dispersionOrder of accuracy of LxW and Crank-Nicolson finite difference schemes boundary condition,8Thomas algorithm, dissipation and dispersion.		
Unit-III: Parabolic PDE'sParabolic systems and boundary conditions, finite difference schemes for parabolic and convection8diffusion equations, ADI scheme on square, boundary conditions and stability for ADI schemes.		
Unit-IV: Well-posed systems and estimationsThe theory of well-posed IVPs scalar and systems, convergence estimates for smooth and non- smooth initial conditions, convergence estimate for parabolic differential equations, Lax-Richmyer10equivalence theorem, well-posed and stable initial BVP, matrix method for stability.		
Unit-V: Elliptic PDE'sElliptic equations and regularity estimates, maximum principle and boundary condition, finite8difference schemes for Poisson's equation.		
	Total No. of Lectures	42
Text Books	 Thomas J. W., Numerical Partial Differential Equations: Finite Difference Springer, 1998. Strikwerda J. C., Finite Difference Schemes and Partial Differential SIAM, Philadelphia, 2nd Ed., 2004. 	ce Methods, Equations,
References Books	 Leveque R. J., Finite Difference Methods for Ordinary and Partial Equations, Steady State and Time Dependent Problems, SIAM Philadelph Smith G. D., Numerical Solution of Partial Differential Equations: Finite Methods, Oxford University press, 1977. 	<i>Differential</i> iia, 2007. 2 <i>Difference</i>

Course Title	MOOC/SWYAM Course
Course Code	SWAY757
Credits	4
Course Category	DSE
Year / Semester	II / IV

Course Title	Project Thesis
Course Code	MA726
Credits	6
Course Category	CC
Year / Semester	II / IV